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Introduction: What to Expect

dRehmFlight is a simple, bare-bones flight controller intended for all types of vertical takeoff
and landing (VTOL) vehicles from simple multirotors to more complex transitioning vehicles with
a small amount of user modification. This flight controller software and hardware package was
developed with people in mind who may not be particularly fluent in object-oriented programming,
or software development in general. Other flight controller packages work well for very specific
applications, but their extensively developed code bases are not friendly to newcomers looking to
hack something together for their new and unique VTOL platform.

The goal of dRehmFlight is to have an easy to understand flow of discrete operations in one place
that allows anyone with basic knowledge of coding in C/Arduino to peer into the code, make the
changes they need for their specific application, and quickly have something flying. Even without
any coding knowledge, the documentation and supporting videos were created to bring someone
up to speed as quickly and as painlessly as possible. The Teensy 4.0 board used for dRehmFlight
is an extremely powerful microcontroller that allows for understandable code to run at very high
speeds: perfect for a hobby-level flight controller. It is assumed that anyone using this code has
previous experience building and flying model aircraft and is familiar with basic RC technology
and terminology.

Rather than a comprehensive package suitable for plug-and-play type setup, this package serves
more as a toolkit, where all the required difficult computations and processes are done for you.
For example: radio inputs, actuator outputs, sensor filtering, and well-tested PID controllers are
all implemented and ready to use. From there, it is simple to adapt to your specific vehicle
configuration with full access to every variable and microcontroller pinout without needing to dive
multiple layers deep into the code–unlike other flight controller packages. The code is easily modified
and expandable to include your own actuators, data collection methods, and sensors. If you can
use Arduino, you can expand the capabilities of this flight controller to your liking.

This code is entirely free to use and will stay that way forever. If you found this helpful for
your project, donations are appreciated: https://www.paypal.me/NicholasRehm

Introduction Video:
https://www.youtube.com/watch?v=tlD0C5CrWcA

1 Overview

This package is a flight controller intended to simply stabilize an otherwise unstable vehicle platform
such as a multirotor, small helicopter, or other unique VTOL platform. It may also be used to
supplement passively stable platforms such as airplanes, and can even be used on other types
of robotics projects that don’t fly. This is not a flight computer, which would handle advanced
autonomy, computer vision, or path planning. However, dRehmFlight can be modified to accept a
serial input with simulated radio pilot commands, which could be generated by a separate onboard
companion computer. This is outside the scope of this project. dRehmFlight is meant to accept
radio commands from a ground-based pilot, interpret them as vehicle state setpoints (desired vehicle
angle or rotation rate), and have the vehicle perform those commands.

The code is designed to run on a Teensy 4.0 microcontroller with the MPU6050 IMU which
together cost less than $30. The Teensy 4.0 is an extremely powerful microcontroller with 40 digital
pins, 31 of which are PWM-enabled, and all of which are interrupt capable. It’s ARM Cortex-M7
microprocessor features a 600 MHz clock speed enabling a flight control loop rate of 2 kHz with
plenty of overhead for custom code additions. The code is compiled and uploaded to the board
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using the simple-to-use Arduino IDE and the Teensyduino add-on. Up to 6 radio inputs can either
be supplied via conventional PWM on individual channels/pins, PPM or SBUS over a single pin,
or even over serial Spektrum DSM protocol. The code is easily modified for additional channels as
well by following the general methodology of the existing 6 channels included by default.

The code provides all the necessary radio interface, IMU interface, and simple controller methods
to allow for complete stabilization of a small flying vehicle. Radio data is gathered using the Teensy
4.0’s interrupt and serial capability from a standard hobby radio receiver. This is done over multiple
pins through individual PWM, or one single pin through PPM, SBUS, or DSM protocol. Any radio
controller with either of these protocols will be able to interface with dRehmFlight, and brand-
specific channel mapping can be accounted for in the code or radio itself. IMU data from the
default MPU6050 is received over one of the Teensy’s I2C buses. Support for the MPU9250 9DOF
IMU is also included using one of the Teensy’s SPI ports. This data is lightly processed to give a
cleaner signal for the raw gyro and accelerometer readings, and fused together using a Madgwick
filter to give roll, pitch, and yaw estimates. All of this data is available to the user at any time in
the main flight control loop, as the global variables are continually updated for each loop iteration.
The radio data is converted into desired state setpoints such as desired angle or angular velocity
and combined with the orientation data from the IMU in the actual controller portion of the main
loop. Here, stabilized axis variables for roll, pitch, and yaw are generated based on the error in
current vehicle state from the desired state. Currently, there are three implemented options for
control, all of which are PID-based methods. The stabilized axis variables from the controller
are then applied to the actuator outputs of the vehicle in the control mixer. The control mixer
is the primary area of interest in the flight control loop for configuring the code for any type of
vehicle configuration. Here, the user is free to assign stabilization to the motors or servos however
the vehicle configuration requires. The user may also assign different mixing configurations based
on the state of an auxiliary radio channel, allowing for VTOL transition vehicles with variable
dynamics. Finally, the stabilized and mixed actuator commands are scaled appropriately and
then written out to the actuators themselves at their designated pins. The preferred method for
controlling motors is OneShot125 protocol which has been implemented in the code by default. As
a result, it is recommended to use BLHeli ESCs capable of interpreting OneShot125. If this method
is not desired, the code supports 7 servos operating on conventional PWM which can also be used
to command motors through older ESCs that do not support OneShot125.

All of this code is compiled and uploaded through the Arduino IDE and Teensyduino add-
on which allows the Teensy 4.0 board to be treated as an Arduino board. The code is written
in Arduino which is a variant of C and relatively easy to understand with any prior experience
with other coding languages. With the exception of a few areas of the code required for the IMU
interface and data processing, everything else is written in such a way to favor understandability
rather than performance/speed. Basic knowledge on variables and logical statements will allow for
complete understanding of the core processes enabling the operation of this flight controller. The
same simple coding practices can then be used to modify the code for your specific application.

To reiterate: this is a simple flight controller designed to be easy to understand, and is intended
to be modified before put to use in virtually any small VTOL configuration. This package is not
intended to be used on very large vehicles (exceeding 20 lbs) or human carrying aircraft, but rather
small MAV-scale vehicles used for hobby or academic research purposes. It is not an autopilot
capable of path planning or other autonomous functionality by default, but the computing power
of the Teensy 4.0 will allow the user to modify the code to potentially add this functionality as
they see fit for their application. dRehmFlight should be exclusively thought of as a starting point
for flight control and stabilization of small flying vehicles with dynamic configurations.
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2 Hardware Requirements

The physical flight controller which runs the dRehmFlight code consists of a Teensy 4.0 microcon-
troller and MPU6050 6 degree of freedom IMU. Currently, only the Teensy 4.0 board has been
tested, though the newer 4.1 board with more pinouts should work identically without modification
to pinouts.

2.1 Teensy 4.0

The Teensy 4.0 is an extremely capable and cost-effective microcontroller, intended to be used for
robotics, audio projects, or other Arduino project-type applications. The Teensy 4.0 features an
ARM-Cortex M7 processor with a clock speed of 600 MHz. It has 31 PWM-enabled pins and 40
digital i/o pins which are all interrupt capable. Additionally, 3 I2C, 3 CAN bus, and 7 serial ports
allow for multiple options to interface various sensors. Please note that the Teensy 4.0 operates on
3.3v logic. As a result, all sensor inputs to the board must be 3.3v logic level and not 5v to prevent
damage to the board.

Figure 1: Teensy 4.0 pinout diagram.

For more information and detailed specifications:
https://www.pjrc.com/store/teensy40.html

Amazon purchase link:
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https://amzn.to/2V1q2Gw

Alternative purchase links:
Sparkfun
Adafruit
Electromaker

2.2 Teensy 4.1

The Teensy 4.1 is effectively the same board as the 4.0, though with more broken out pins as well
as an integrated SD card port. This board will work with the dRehmFlight VTOL code and will
give additional custom pinout capability, though at a slightly higher price point.

Figure 2: Teensy 4.1 pinout.

For more information and detailed specifications:
https://www.pjrc.com/store/teensy41.html

Amazon purchase link:
https://amzn.to/3oCJUvx

2.3 MPU6050 IMU

The GY-521 breakout of the MPU6050 6 degree of freedom IMU is used for attitude estimation
for the default recommended hardware setup. This board is extremely cost effective, reliable, and
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gives adequate measurement precision to stabilize a small flying vehicle.

For more information and detailed specifications:
http://www.haoyuelectronics.com/Attachment/GY-521/mpu6050.pdf

Amazon purchase link:
https://amzn.to/3edF1Vn

2.4 MPU9250 IMU

The code also supports the MPU9250 9 degree of freedom IMU. The addition of the 3-axis mag-
netometer may be desirable for some users for better attitude estimation (particularly in the yaw
axis), though it is not necessary for general applications and requires a bit more attention for proper
setup. More information on the implementation of this IMU is provided in a tutorial at the end of
this document.

For more information and detailed specifications:
https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf

Amazon purchase link:
https://amzn.to/3ijlZOo

3 Hardware Setup

3.1 Suggested/Default Setup

The code by default provides outputs for 6 motors and 7 servos, as well as options for PPM receiver
in, SBUS, DSM, or standard 6 channel PWM receiver input. The following hardware configuration
requires the least amount of soldering with the Teensy 4.0 to get the board up and running with
the default code and MPU6050 IMU, which all together weighs less than 15 grams. This is merely
a suggested setup that is immediately compatible with the default code. Please feel free to use your
own method–from breadboards to PCBs–to set your hardware up for your application.

Tutorial Video:
https://www.youtube.com/watch?v=EBXBEB-Xv7w&
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Figure 3: General i/o layout of the broken-out Teensy 4.0 board.

Figure 3 shows the general layout with header pins soldered directly to the Teensy 4.0. The
left side contains outputs for 6 motors using OneShot125 protocol and 7 servos/motors using
conventional PWM at 50 Hz. The right side contains pins to interface with the MPU6050 IMU
and radio input, using either a single PPM, SBUS, or DSM radio pin, or individual PWM pins for
each of the supported 6 channels. The pin headers must be soldered to the board. Figure 4 and
Table 1 details the functionality of each numbered pin and corresponding location on the broken
out configuration for the default recommended setup.

Figure 4: Pinouts on the broken out Teensy 4.0.
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Pinout Pin Number Notes

M1 0 OneShot125 protocol

M2 1 OneShot125 protocol

M3 2 OneShot125 protocol

M4 3 OneShot125 protocol

M5 4 OneShot125 protocol

M6 5 OneShot125 protocol

S1 6 50 Hz PWM

S2 7 50 Hz PWM

S3 8 50 Hz PWM

S4 9 50 Hz PWM

S5 10 50 Hz PWM

S6 11 50 Hz PWM

S7 12 50 Hz PWM

PPM in 23 If using PPM receiver

Ch1 PWM in (thro) 15 If using PWM receiver or DSM Sat

Ch2 PWM in (ail) 16 If using PWM receiver

Ch3 PWM in (elev) 17 If using PWM receiver

Ch4 PWM in (rudd) 20 If using PWM receiver

Ch5 PWM in (gear) OR SBUS in 21 If using PWM receiver or SBUS

Ch6 PWM in (aux1) 22 If using PWM receiver

IMU SDA 18 MPU6050 IMU I2C connection

IMU SCL 19 MPU6050 IMU I2C connection

Table 1: Pinout assignment in default code for recommended board setup.

A combination of angled 3-pin male headers and standard male headers are required to complete
the flight controller assembly. First, a row of 3-pin male angled headers (13 pins in length) must
be soldered to the left side of the board when looking at the top with the micro USB toward the
front (Figure 5). This is soldered on from pin 0 to pin 12 on the board, with the closest row of
the 3 pins soldered into the Teensy’s pins, and 2 rows hanging over the left side. The protruding
pin rows are used for 5 V power to servos (or power in from an ESC) and ground. Next, a row of
single male pin headers (11 pins in length) are soldered to the right side of the board from the 3
V pin to pin 14 on the Teensy. Finally, two sets of 3 single male pin headers are soldered on to
the top right corner to the 5 V and ground pins on the Teensy. These are soldered such that two
additional pins hang over the right side of the board and allow for multiple devices (IMU, receiver)
to receive power. These additional pins will be wired together for an accessible 5 V power rail and
ground rail.

Angled 3-Pin Headers Amazon Purchase Link:
https://amzn.to/3cM76TK

Single Headers Amazon Purchase Link:
https://amzn.to/3cGtoud

22 AWG Silicone Wire Amazon Purchase Link:
https://amzn.to/3j8yoH1
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Figure 5: Special notes for soldering the Teensy 4.0 for the default setup.

Once the pin headers are soldered on to the Teensy, there is minimal wiring required to complete
the assembly. First, the 3-pin headers extending over the side of the board must be wired together
to create a 5 V rail and a ground rail. To do this, 22 AWG wire can be stripped and a few strands
weaved between the pins before soldering the complete rail together. This must also be done for
the 3 pin long power pins on the other side of the board. In this case, pins are connected such that
it will create 3 total 5 V pins and 3 total ground pins extending out the side. Once done for all
of the rails, the outermost rail of the 3-pin angled headers must be soldered to the nearest ground
pin on the Teensy with a short piece of 22 AWG wire. Finally, the 5V rail of the 3-pin angled
headers must be connected to the 5 V power rail on the other side with a short piece of 22 AWG
wire. Please note that if using many or high current draw servos, the 3-pin angled header power
line should be powered by a different power source than the 5 V pin powering the Teensy. This is
because the Teensy is sensitive to voltage dips or spikes that servos may cause on smaller voltage
regulators. For general use, however, the Teensy and servos can operate off of the same 5 V power
source such as an ESC’s built-in BEC.

One final note: if using more than 2 servos, it is recommended to cut the two small pads on the
underside of the board to prevent a USB connection from attempting to power the servos (Figure 6,
Figure 1 shows the location on the board). If the servos are drawing too much current, this could
damage the computer’s USB port. The downside of this method is that external power must be
supplied to the board in order to connect to the computer over USB. An alternative to this is to
either unplug all servos before plugging into the computer, or wire a SPST switch between the
servo power rail and 3 pin power rail, which can be switched on and off when plugging into the
computer.
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Figure 6: Pads to separate in order to isolate USB power and prevent a USB connection from
powering the board when using many servos.

Figure 7: Underside view of completed broken out Teensy 4.0.

Next, the MPU6050 IMU is soldered separately so that it can be placed in a secure location
on the vehicle in the correct orientation indicated in Figure 17. Four 22 AWG wires of length of
the user’s choosing must be soldered to the gy-521’s VCC (5 V), GND (ground), SCL, and SDA
pins. Two sets of two female pin headers (JST connectors would work too) are soldered to the 5
V and ground wires, and the SCL and SDA wires. This process is shown in Figure 8. If using the
MPU9250 IMU instead of the default MPU6050, please see the tutorial at the end of this document
for the hookup procedure.

Note: It may be a better idea to solder the IMU wires directly to the pins on the Teensy rather
than use connectors that could be pulled loose while in flight.
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Figure 8: Soldering the connection for the flight controller’s MPU6050 IMU.

After soldering the IMU properly, the two sets of two female pins can plug into the broken out
Teensy assembly, shown in Figure 9. The VCC and GND pins from the MPU6050 gy-521 board
plug into one of the three 5v and ground pin options on the broken out Teensy, and the SDA and
SCL pins plug into pins 18 and 19 on the Teensy, respectively.

Figure 9: Plugging the IMU into the broken out Teensy 4.0.

To complete the full flight controller assembly, the receiver is plugged into the flight controller.
Figure 10 shows this process being done for a conventional Spektrum PWM receiver. Please note the
channel mappings in Tables 1 and 2 for their corresponding functionality and pin numbers. In this
case, the Spektrum channel mapping corresponds perfectly with the channel mapping designated
for dRehmFlight. If using a PPM, SBUS, or DSM receiver, only a signal pin is required to transmit
the full 6 channels. In all cases, the receivers must connect to one of the three 5 V and ground pins
on the broken out Teensy to receive power. Note that some DSM satellite receivers require 3.3 V,
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not 5 V, so they should be powered by one of the Teensy’s 3.3 V pins. With this complete setup,
5 V power can be applied to the flight controller anywhere (through the motor and servo rails,
extra broken out 5 V and ground pin, or directly to the receiver) and all systems will be properly
powered for full operation.

Figure 10: Plugging the receiver into the flight controller.

3.2 Alternative Setups

The suggested hardware setup is only a starting point for this flight controller. Custom setups may
be required for different or expanded pin functionality. Figure 11 shows an early flight controller
prototype soldered to a small prototyping board. In this case, the IMU is rigidly connected to
the assembly rather than separated as is the case with the suggested hardware setup. The Teensy
board attaches to the prototyping board with male and female pins so that it is removable and
can be transferred to other vehicles. Investing in creating proper breakout boards for the Teensy
may be desirable to avoid having to purchase multiple Teensy boards for multiple vehicles. This
particular breakout of the Teensy 4.0 has different pinouts than that of the default code, which
must be modified accordingly. The next section as well as a pin selection tutorial at the end of this
document detail the process of establishing required pins and modifying the code accordingly.
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Figure 11: Early Teensy flight controller prototype.

3.3 Notes on Pin Selection

The user is free to select the pins on the Teensy 4.0 as they see fit for their application. Default
pins are suggested in the above suggested setup for hobbyists, though the user may be interested in
reserving serial or I2C ports for custom sensor integration. With that said, please use the following
guidelines in conjunction with Figure 1 when assigning custom pinouts in the code:

• 5 V Power is supplied to the Vin pin in the far corner by the micro USB. The board must be
grounded on any available ground pin.

• Do not use pin 13; this pin is directly connected to the onboard LED which is used throughout
the code to signal proper operation of the flight controller.

• Pins 18 (SDA0) and 19 (SCL0) are used to interface with the MPU6050 IMU over the I2C
bus.

• If using the MPU9250, pins 34-37 on the back side of the board are used to interface over
SPI connection.

• Any servo actuators must be connected to a PWM capable pin.

• ESCs using OneShot125 protocol may use any digital pin. Otherwise, they must be connected
to a PWM capable pin.

• Radio input pins (for PWM in or PPM in) can be connected to any digital pin.

• SBUS radio input should stay connected to serial RX5 (pin 21).

• DSM radio input should stay connected to serial RX3 (pin 15)

• The Teensy boards operate with 3.3 V logic level. Any sensors must operate at this level or
be stepped down accordingly to avoid damaging the board.
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4 Software Requirements

The flight control code is written in the Arduino/C language and is uploaded to the board using
the Arduino IDE. To connect to the Teensy, you must also download and install the Teensyduino
Arduino add-on.

Download the latest version of the Arduino IDE here:
https://www.arduino.cc/en/main/software

Download the Teensyduino add-on for Arduino here:
https://www.pjrc.com/teensy/td_download.html

5 Software Setup

5.1 Downloading the Code

1. Navigate to the GitHub repository for dRehmFlight: https://github.com/nickrehm/dRehmFlight
2. Download the full package:

Figure 12: Downloading the repository from Github.

3. Save and unzip the .zip folder to your desired location:

Figure 13: Unzipping the downloaded file.
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4. Navigate to ’versions,’ then the latest version of dRehmFlight. The user is free to modify the
contents of the folder, including the Arduino files. However, the folder name and the main Arduino
sketch name must be identical should either of them be changed.

5.2 Selecting the Board and COM Port in Arduino

After installing Arduino and Teensyduino and plugging in the Teensy 4.0 using a micro USB cable,
the computer should automatically detect and install the necessary drivers for Teensy. Open the
dRehmFlight Arduino sketch and navigate to ’Tools,’ then ’Board,’ then ’Teensyduino’ and select
’Teensy 4.0’:

Figure 14: Selecting the correct board in Arduino.

To access the Arduino serial monitor or serial plotter for troubleshooting and setup, navigate
to ’Tools,’ then ’Port,’ and under ’Serial Ports’ NOT ’Teensy Ports,’ select ’COMX (Teensy) where
X is the numbered port arbitrarily assigned by your computer:
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Figure 15: Selecting the correct COM port in Arduino.

Selecting this port will allow the user to use Arduino’s serial monitor and plotter with the
Teensy. If the serial monitor or plotter is opened while the other is already opened, an orange
warning will appear at the bottom of the screen and you may not be able to open either, even after
restarting the board. Save and close Arduino, then repeat the above process to fix this issue.

5.3 How to Use Teensyduino

Teensyduino is a passive tool that operates in the background of Arduino to compile and upload
Arduino code to the Teensy board. When the user uploads code to the board at the top left of the
Arduino IDE, Teensyduino will automatically open in a small window and ask to confirm uploading
to the board. The user can click the small green ’Auto’ button and Teensyduino will automatically
upload to the board when clicking the Arduino upload button in the future. Sometimes it may
encounter a problem, in which case it requests the user to press the small reset button on the board
itself.

Figure 16: Uploading to the board with Teensyduino.
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6 Conventions Used

6.1 IMU and Vehicle Orientation

Figure 17 shows the axis convention used for IMU data and vehicle orientation. +X is denoted as
out the nose, +Y is out the left side, and +Z is upward. Pay special attention to mount the flight
controller assembly (or just the IMU if it has been wired to be separate from the Teensy) in the
correct orientation corresponding to this convention.

Figure 17: Vehicle and IMU axis convention used.

6.2 Radio Channel Mapping

Table 2 details the channel mapping assumed throughout the code. Channel numbers are used in
code which correspond to their respective functionality. If you are unable to change the channel
mapping within your radio to match this convention (or plug PWM channels into the correct
assumed pin for the expected functionality), a change can be made within the radioComm file
included with the current version of dRehmflight to re-assign your radio inputs to these assumed
mappings.

Channel Number (In Code) Function Notes

1 Throttle 1000 min, 2000 max

2 Roll 1000 full left, 2000 full right, 1500 center

3 Pitch 1000 pitch up, 2000 pitch down, 1500 center

4 Yaw 2000 full left, 1000 full right, 1500 center

5 Gear Throttle cut when greater than 1500

6 Aux1 Free auxiliary channel

Table 2: Channel convention used in code.
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7 The Code

Code Walk-through Video:
https://www.youtube.com/watch?v=_n5GBudUf5Q

The main code is contained entirely within the dRehmFlight Arduino sketch (with the exception
of radio communication functions which are included separately in the radioComm file in the same
folder). Figure 18 shows the general sequence of contents that can be found in the main Arduino
sketch.

Figure 18: General contents in the main Arduino sketch.

The user-specified defines section is where receiver type, IMU type, and IMU sensitivity values
are selected. The user-specified variable declaration section contains numerical variables such as
failsafe values or controller gains which can be readily changed or tuned. Pins are assigned and
declared in the pin declaration section (all sections are marked by comments within the code as
well). Most variables used throughout the code are global variables. This is generally bad practice
for coding, but allows for access to nearly every variable and parameter wherever we want within
the code. All new variables created can be declared here. Next, the void setup section contains
the setup code and functions which are executed one time on startup. Figure 20 expands on the
processes occurring within the void setup. The void loop section contains the flight control code
and functions which is run continuously after initial setup. Figure 19 shows the general architecture
for a flight control loop and Figure 21 expands on the specific processes occurring within the void
loop to achieve this functionality. Finally, all of the critical functions which are called within the
void setup and void loop are contained at the end of the Arduino sketch. A specific operation
is performed within each function, and they have been segmented in such a way that these key
operations are easily understood and followed.

21

https://www.youtube.com/watch?v=_n5GBudUf5Q


Figure 19: General overview of a flight control loop allowing stabilization of a small aerial vehicle.

7.1 void setup()

The void setup portion of the code is run one time at startup and is used to establish proper
communication with pins, sensors, and the radio. It also allows for some safety features to be
established such as failsafe functionality before any ESCs are armed in preparation for the main
flight control loop. Detailed description of each function, relevant variables, and other information
is provided in the Functions List below.

Figure 20: Flow of operation in the void setup() run one time on startup.

7.2 void loop()

The void loop portion of the code contains the main flight control code which is segmented into a
few different functions. These functions are sequentially called for every loop and each carry out
unique tasks for the complete flight control loop. Detailed description of each function, relevant
variables, and other information is provided in the Functions List below.
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Figure 21: Flow of operation in the void loop() run continuously after startup.

8 Functions List

This section gives a detailed description of every function contained within the code. It is rec-
ommended to be familiar with the general flow of operations in Figures 20 and 21 first, and then
become more familiar with each function, the important variables created or modified, and the
options for customization. When in doubt, Ctrl + f will help to navigate through the code itself to
find the discussed functions and variables, though the contents described in Figure 18 gives a good
general starting location.

8.1 radioSetup()

Please note that this function is contained within the radioComm file, not the main Arduino sketch.
This function sets up the radio connection for the desired radio type selected in the user-specified
defines section of the code. For PWM-type receivers, the radio pin variables chXPin corresponding
to the hookup on the receiver are declared as interrupt pins. This means that when any of the
radio pins changes states from high or low, the corresponding interrupt service routine function
(getChX, where X is the channel number) is immediately run, regardless of what the rest of the
code is doing. These ’sub’ functions measure the total time in microseconds for a high pulse. This
high pulse duration is the radio command from the receiver, typically in a range of 1000 - 2000 us.
This occurs for every individual channel separately. The generated ’raw’ channel readings are not
directly accessed in the main code, but rather the most current raw channel values are provided to
the getCommands() function whenever that is called.

For PPm-type receivers, the PPM Pin variable is declared as an interrupt pin. This means
that when the PPM radio pin changes state from high or low, an interrupt service routine function
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(getPPM()) is immediately run, regardless of what the rest of the code is doing. This ’sub’ function
measures the total time in microseconds for each high pulse in succession for the complete PPM
pulse train. These high pulse durations are the radio commands from the receiver in order, typically
in a range of 1000 - 2000 us. The order at which specific channels arrive and are assigned in the
PPM pulse train can be modified in getPPM() to match the convention used in Table 2. The
generated ’raw’ channel readings are not directly accessed in the main code, but rather the most
current raw channel values are provided to the getCommands() function whenever that is called.

For SBUS-type receivers, the bolderflight library is used to interpret the serial signal on RX5
(Pin 21). If SBUS is selected, communication with the SBUS receiver is started using sbus.begin().

8.1.1 Important Variables

Variable Name Modifiable? Type Notes

ch1Pin,
ch2Pin,

...

Yes,
in pin declaration

const int
Pins on board assigned to radio

channels for PWM mode

PPM Pin
Yes,

in pin declaration
const int

Pin on board assigned to radio
PPM output for PPM mode

channel 1 raw,
channel 2 raw,

...
No unsigned long

Created and updated by ISR
sub function continuously

Table 3: Important variables related to the radioSetup() function.

8.2 IMUinit()

This function initializes the MPU6050 IMU on the I2C bus at address 0x6B if the MPU6050 is
selected in the user-specified defines section. If the MPU9250 is instead selected, this function
initializes the IMU using SPI. Please note that by default, the code assumes the MPU6050 IMU is
hooked up to SDA0 and SCL0 (pins 18 and 19).

8.2.1 Important Variables

There are no important variables pertaining to this function.

8.3 calculate IMU error()

This function reads the raw accelerometer and gyro data for each axis 12,000 times on startup and
takes the average of these readings to give offset error values for each measurement. The computed
offset error values are applied to the IMU measurements in the main loop in getIMUdata() such
that every reading is zero (with the exception of the z axis accelerometer reading which should read
1) when the flight controller is level and at rest. These calibration values are printed to the serial
monitor to be pasted in the user-specified variables section of the code. Once this is complete, this
function can be commented out until the IMU needs to be re-calibrated, which should not be often.
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8.3.1 Important Variables

Variable Name Modifiable? Type Notes

AccErrorX,
AccErrorY,
AccErrorZ

No float
Computed at startup and applied to

accelerometer readings in getIMUdata()

GyroErrorX,
GyroErrorY,
GyroErrorZ

No float
Computed at startup and applied to

gyro readings in getIMUdata()

Table 4: Important variables related to the calculate IMU error() function.

8.4 calibrateAttitude()

This function is used to ’warm up’ the IMU and Madgwick filter, which fuses the accelerometer and
gyro data for attitude estimation. Contained within is a simulated main loop, containing only the
getIMUdata(), Madgwick(), and loopRate() functions. These functions are looped for 5 seconds
(10,000 times at 2000 Hz) giving the Madgwick filter enough time to converge on the IMU’s correct
orientation before the code enters the main loop.

8.4.1 Important Variables

There are no important variables pertaining to this function.

8.5 getIMUdata()

This function pulls the raw accelerometer, gyro, and magnetometer data (if using MPU9250) for
each axis from the IMU and applies a simple low pass filter to the readings to reduce noise. It
reads accelerometer and gyro data from the IMU as AccX, AccY, AccZ, GyroX, GyroY, GyroZ
and magnetometer readings as MagX, MagY, MagZ. These values are scaled according to the IMU
datasheet to put them into correct units of g’s and degree/sec, and micro Tesla respectively. Filter
values B accel, B gyro, and B mag contained in the user-specified variable section are tuned by
default to cut off noise above about 80 Hz. A lower frequency cutoff will lead to a non-negligible
lag in the raw IMU readings, and a higher frequency cutoff will give a noisier attitude estimate
later.
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8.5.1 Important Variables

Variable Name Modifiable? Type Notes

AccX,
AccY,
AccZ

No float
Units in g’s, X and Y should
read 0 at rest, Z should read

1 at rest

GyroX,
GyroY,
GyroZ

No float
Units in rad/sec, should all

read 0 at rest

MagX,
MagY,
MagZ

No float Units in uT

B accel Yes float

Minimum 0, maximum 1.
Decrease for lower cutoff frequency

(slower response), increase for higher
cutoff frequency (noisier)

B gyro Yes float

Minimum 0, maximum 1.
Decrease for lower cutoff frequency

(slower response), increase for higher
cutoff frequency (noisier)

B mag Yes float

Minimum 0, maximum 1.
Decrease for lower cutoff frequency

(slower response), increase for higher
cutoff frequency (noisier)

Table 5: Important variables related to the getIMUdata() function.

8.6 Madgwick()

This function fuses the filtered accelerometer and gyro readings AccX, AccY, AccZ, GyroX, GyroY,
GyroZ, MagX, MagY, MagZ for attitude estimation of vehicle body angles roll IMU, pitch IMU,
and yaw IMU in degrees. A quaternion-based implementation of the Madgwick algorithm is used to
efficiently and accurately estimate these body angles. The quaternion state estimation is available
for data logging as q0, q1, q2, q3. If magnetometer data is not available (if using MPU6050
IMU), this function will call Madgick6DOF() which is a 6 degree of freedom implementation of
the Madgwick algorithm instead. A tune-able filter parameter B madgwick in the user-specified
variable section adjusts the weight of accelerometer and gyro data in the state estimate. Higher
B madgwick leads to a noisier estimate, while lower B madgwick leads to a slower to respond
estimate. The default value for beta is tuned well and should not be modified for normal use.
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8.6.1 Important Variables

Variable Name Modifiable? Type Notes

roll IMU,
pitch IMU,
yaw IMU

No float
Units in degrees, body angles

of IMU

q0, q1, q2, q3 No float
Quaternion state estimation,

body angles computed from this

B madgwick Yes float

Minimum 0, maximum 1.
Decreasing leads to slower

estimate, increasing leads to
noisier estimate

Table 6: Important variables related to the Madgwick() function.

8.7 getDesState()

This function generates the desired state variables thro des, roll des, pitch des, and yaw des from
the radio PWM commands. With the exception of thro des which remains normalized between 0
and 1, the remaining variables are scaled to be within the maximum bounds declared in the user-
specified variable declaration section of the code. These bounds correspond to either degrees for
angle mode, or degrees/second for rate mode operation. This function also creates the roll passthru,
pitch passthru, and yaw passthru variables, which can be used directly in controlMixer() to com-
mand unstabilized signals to the motors or servos.

8.7.1 Important Variables

Variable Name Modifiable? Type Notes

roll des,
pitch des,
yaw des

No float
Desired angle in degrees or rate
in degrees/second. Constrained
within +/- maxAXIS for each

thro des No float
Normalized desired throttle

between 0 and 1

roll passthru,
pitch passthru,
yaw passthru

No float
Pass-through command variables.

Constrained within +/-0.5

Table 7: Important variables related to the getDesState() function.

8.8 controlRATE()

This function contains a simple PID rate controller implementation and generates stabilized axis
variables roll PID, pitch PID, and yaw PID. Error is computed from the difference in the desired
axis rate (roll des, pitch des, and yaw des) and the actual angular rate (GyroX, GyroY, and GyroZ).
Controller gains P, I, and D for the rate controller and each axis are adjusted in the user specified
variable declaration section. Please note that regardless of control method selected, the yaw axis
is always stabilized with the rate controller.
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Two safety features are implemented within this function regarding the integral (I) terms to
prevent excessive buildup which can lead to unsafe motor command generation. First, the I term
for each axis is defaulted to zero for low to minimum throttle settings, meaning that the I terms
will not build up while the vehicle is on the ground and throttle is set to minimum. Otherwise,
small error can build up over time, leading to one or more of the motors beginning to spin up even
if minimum throttle is commanded by the transmitter. Additionally, the I terms are saturated
within maximum bounds to prevent them from building up past unsafe levels. Realistically, the I
terms should not need to increase more than 25% of the total available throttle range in order to
properly stabilize a vehicle. The i limit variable has been set to prevent this unsafe buildup.

Figure 22: PID controller stabilizing on angular rate setpoint.

8.8.1 Important Variables

Variable Name Modifiable? Type Notes

roll PID,
pitch PID,
yaw PID

No float
Stabilized variables for each
axis from the PID controller

Kp AXIS rate Yes float
Proportional gain for each
axis of the rate controller

Ki AXIS rate Yes float
Integral gain for each

axis of the rate controller

Kd AXIS rate Yes float
Derivative gain for each

axis of the rate controller

i limit Yes float
Integral term saturation level

to prevent unsafe integral
buildup

Table 8: Important variables related to the controlRATE() function.
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8.9 controlANGLE()

This function contains a simple PID angle controller implementation and generates stabilized axis
variables roll PID, pitch PID, and yaw PID. Error is computed from the difference in the desired
axis angle (roll des, pitch des) and the actual angle (roll IMU, pitch IMU). Controller gains P, I,
and D for the angle controller and each axis are adjusted in the user specified variable declaration
section. Please note that regardless of control method selected, the yaw axis is always stabilized
with the rate controller.

Two safety features are implemented within this function regarding the integral (I) terms to
prevent excessive buildup which can lead to unsafe motor command generation. First, the I term
for each axis is defaulted to zero for low to minimum throttle settings, meaning that the I terms
will not build up while the vehicle is on the ground and throttle is set to minimum. Otherwise,
small error can build up over time, leading to one or more of the motors beginning to spin up even
if minimum throttle is commanded by the transmitter. Additionally, the I terms are saturated
within maximum bounds to prevent them from building up past unsafe levels. Realistically, the I
terms should not need to increase more than 25% of the total available throttle range in order to
properly stabilize a vehicle. The i limit variable has been set to prevent this unsafe buildup.

Figure 23: PID controller stabilizing on angle setpoint.
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8.9.1 Important Variables

Variable Name Modifiable? Type Notes

roll PID,
pitch PID,
yaw PID

No float
Stabilized variables for each
axis from the PID controller

Kp AXIS angle Yes float
Proportional gain for each
axis of the angle controller

Ki AXIS angle Yes float
Integral gain for each

axis of the angle controller

Kd AXIS angle Yes float
Derivative gain for each

axis of the angle controller

i limit Yes float
Integral term saturation level

to prevent unsafe integral
buildup

Table 9: Important variables related to the controlANGLE() function.

8.10 controlANGLE2()

This function contains an advanced cascaded PID angle controller implementation and generates
stabilized axis variables roll PID, pitch PID, and yaw PID. A P-I controller on angle serves as
the outer loop controller, which generates requested rate commands for the standard PID rate
controller inner loop. These requested rate commands are filtered with a first order low pass filter
which serves as damping of the angle controller.

Error in angle is computed from the difference in the desired axis angle (roll des, pitch des) and
the actual angle (roll IMU, pitch IMU). Controller gains P and I for the angle controller and each
axis are adjusted in the user specified variable declaration section. Damping of the angle controller
is adjusted with the B loop roll and B loop pitch parameters, where decreasing this parameter gives
more damping but a slower response.

Error in rate is computed from the difference in the desired axis rate (roll des, pitch des) and
the actual angular rate (GyroX, GyroY). Controller gains P, I, and D for the rate controller and
each axis are adjusted in the user specified variable declaration section. Please note that regardless
of control method selected, the yaw axis is always stabilized with the rate controller.

Two safety features are implemented within this function regarding the integral (I) terms to
prevent excessive buildup which can lead to unsafe motor command generation. First, the I term
for each axis is defaulted to zero for low to minimum throttle settings, meaning that the I terms
will not build up while the vehicle is on the ground and throttle is set to minimum. Otherwise,
small error can build up over time, leading to one or more of the motors beginning to spin up even
if minimum throttle is commanded by the transmitter. Additionally, the I terms are saturated
within maximum bounds to prevent them from building up past unsafe levels. Realistically, the I
terms should not need to increase more than 25% of the total available throttle range in order to
properly stabilize a vehicle. The i limit variable has been set to prevent this unsafe buildup.

To tune this controller, it is first recommended to tune the standard rate controller, as the inner
loop of this controller is identical to the standard rate controller and uses the same controller gain
variables. Then, the angle gains can be adjusted appropriately. Because of the added complexity
and required tuning, this controller is not recommended for novices or first-time setup.
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Figure 24: Cascaded PID controller stabilizing on angular rate setpoint (inner loop) generated by
outer loop angle controller.
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8.10.1 Important Variables

Variable Name Modifiable? Type Notes

roll PID,
pitch PID,
yaw PID

No float
Stabilized variables for each
axis from the PID controller

Kp AXIS angle,
Kp AXIS rate

Yes float
Proportional gain for each

axis of the angle
and rate controllers

Ki AXIS angle,
Ki AXIS rate

Yes float
Integral gain for each

axis of the angle
and rate controllers

Kd AXIS rate Yes float
Derivative gain for the

rate controller

B loop roll,
B loop pitch

Yes float

Outer loop angle damping.
Minimum 0, maximum 1.
Decrease for more angle

damping, increase for less.

i limit Yes float
Integral term saturation level

to prevent unsafe integral
buildup

Table 10: Important variables related to the controlANGLE2() function.

8.11 controlMixer()

This function mixes the stabilized axis variables roll PID, pitch PID, and yaw PID from the selected
PID controller (as well as the scaled throttle thro des) and creates ’scaled’ actuator variables
mX command scaled and sX command scaled which have a magnitude near 0 to 1. The default
code provided includes mixing for a standard quadrotor configuration to the first four motors.
The stabilized axis variables can also be applied to ’scaled’ variables for commanding servos using
conventional PWM control. Direct commands from the transmitter can be passed through to the
scaled motor or servo variables using the roll passthru, pitch passthru, and yaw passthru variables.
These scaled variables are re-assigned to variables with proper magnitude for writing out to the
pins in scaleCommands(). For example, mX command scaled in a range between 0 to 1 must be
scaled within 125 to 250 if using OneShot125 protocol to command an ESC, or between 0 to 180 if
using a servo library for standard PWM control.

roll PID, pitch PID, yaw PID, and thro des are assigned here according to the desired vehicle
configuration which is fully customized to the user’s needs. For example on a quadrotor, the left
two motors should have +roll PID assigned to them while the right two motors should have -
roll PID assigned to them. The front two should have -pitch PID and the back two should have
+pitch PID, etc. To check if the stabilized variable assignment is correct for your configuration,
tilting the vehicle about an axis should lead to the motors on the falling side to briefly spin up
in response. If the opposite is true, the sign of the stabilized axis variable assignment should be
reversed for the incorrect motors. If this is correct, but commanding a right roll leads to the vehicle
wanting to roll left for example, then the roll stick in the transmitter is reversed. In code, this
can be solved with a negative sign in front of any of the roll des, pitch des, or yaw des variables.
Following proper radio setup, these should all be correct, though there may be a case with unique
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vehicle configurations which have variable dynamics, where an axis of control may need to be flipped
by monitoring the state of an auxiliary radio channel. This is done at the user’s discretion.

8.11.1 Important Variables

Variable Name Modifiable? Type Notes

m1 command scaled,
s1 command scaled,

...
Yes float

Can create additional variables
for use case. Typical range is

∼0 to 1

roll PID,
pitch PID,
yaw PID

No float

Stabilized variables from the PID
controller to be assigned to the

motor and servo outputs.
Typical range is ∼-0.5 to 0.5

thro des No float
Throttle passthrough from radio
to be assigned to the motor and
servo outputs. Range is 0 to 1

roll passthru,
pitch passthru,
yaw passthru

No float
Radio passthrough to be assigned
to the motor and servo outputs

scaled to range -0.5 to 0.5

8.12 scaleCommands()

This function creates actuator command variables mX command PWM from the mX command scaled
variables and sX command PWM from the sX command scaled variables. These are scaled to be
within the proper range for writing out to the designated motor or servo pins. For example, if using
OneShot125 to control the motors, a range of 125 to 250 is used, or if using a conventional servo
library, a range of 0 to 180 is used. The commands are scaled to their respective range and then
constrained so that any error in the code leading up to this step does not generate invalid com-
mands that will ultimately be written out to the pins. By default, this function contains 6 variables
for ESCs using OneShot125 protocol and 7 variables for servos or ESCs using conventional 50 Hz
PWM. If additional actuators are created in the controlMixer() function, corresponding actuator
command variables should be created here as well.

8.12.1 Important Variables

Variable Name Modifiable? Type Notes

m1 command PWM,
s1 command PWM,

...
No int

Can create additional variables
for use case. Must use proper
range for writing out to pins

Table 11: Important variables related to the scaleCommands() function.

8.13 throttleCut()

This function is called before writing out the mX command PWM variables to the respective pins,
where the state of the channel 5 auxiliary switch is monitored for motor arming functionality. If the
switch is high (greater than 1500 PWM pulse), then all of the mX command PWM variables are
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overwritten to low values and the motors will not spin. This safety feature ensures that the flight
control loop is always checking if the user has given permission via channel 5 of the radio to send
command pulses to the motors. Please note that the default failsafe value for channel 5 should
remain greater than 1500, so that if an error in the radio communication occurs, throttleCut()
defaults to disarming the motors. If additional motors have been created and assigned in the
controlMixer() and scaleCommands() functions, or the servo variables are being used to command
motors using conventional PWM, they should be added here with proper low values as well.

8.13.1 Important Variables

There are no important variables pertaining to this function.

8.14 commandMotors()

This function is used to command ESCs using OneShot125 protocol. The mX command PWM
variables scaled to 125 to 250 give the time in microseconds that the respective motor pin should
go high for. To do this, all motors are set to digital high, and then a loop runs until the proper
time for each motor pin has passed, where that pin is written low and a flag variable indicates this
has occurred. When every pin has successfully written low, the loop exits. If additional motors
are desired to be commanded other than the default 6, please follow the pattern of this function to
expand to the desired number of motors.

8.14.1 Important Variables

There are no important variables pertaining to this function.

8.15 armMotors()

This function is used to arm stubborn ESCs on startup. It simply calls commandMotors() in a
loop multiple times to ensure ESCs are armed before the code enters the void loop().

8.15.1 Important Variables

There are no important variables pertaining to this function.

8.16 calibrateESCs()

This function can be used to calibrate your ESCs. It simulates the main loop, but with throttle pass
through to the motor and servo outputs so that you can go through the standard ESC calibration
procedure. Simply uncomment this function in the void setup(), upload the code, and power the
board with your throttle stick at maximum. The ESCs should go through their beeping sequence,
after which, lower the throttle stick to the minimum position and the ESCs will finish arming and
will now be calibrated. Comment this function back out in the void setup and upload the code
before flying.

8.16.1 Important Variables

There are no important variables pertaining to this function.
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8.17 getCommands()

This function gets the most current radio commands as channel X PWM, where X is the channel
number. The simple getRadioPWM() utility function contained within the radioComm file is called
for each channel is using a PWM or PPM type receiver. This function takes the channel number as
input and returns the most recent channel X raw variable, which are being continuously updated
from the interrupt service routines setup in radioSetup(). The current channel X PWM variables
are then filtered using a simple low pass filter to prevent any noise spikes from interfering with the
code.

8.17.1 Important Variables

Variable Name Modifiable? Type Notes

channel 1 PWM,
channel 2 PWM,

...
No unsigned long

Expected range between
1000 to 2000

Table 12: Important variables related to the getCommands() function.

8.18 failSafe()

This function checks the radio commands channel X PWM for erroneous values and sets all of
them to default failsafe values if any are detected. If any of them exceed expected bounds, failsafe
values channel X fs established in the user-specified variable section are instead used. Please note
that the default failsafe values correspond to: minimum throttle, centered aileron, elevator, and
yaw sticks, and channel 5 and 6 auxiliary switches set to 2000. Also note that channel 5 is used for
throttle cut functionality, and the default failsafe value for this channel is set above 1500 to enable
throttle cut if radio connection is disturbed. For safety reasons, this should not be modified.

8.18.1 Important Variables

Variable Name Modifiable? Type Notes

channel 1 fs Yes unsigned long Default 1000

channel 2 fs Yes unsigned long Default 1500

channel 3 fs Yes unsigned long Default 1500

channel 4 fs Yes unsigned long Default 1500

channel 5 fs Yes unsigned long

Default 2000
(enables throttle
cut when loss of

radio signal detected)

channel 6 fs Yes unsigned long Default 2000

Table 13: Important variables related to the failSafe() function.

8.19 floatFaderLinear()

This function is a simple utility function which linearly interpolates, or fades, a specified variable
between two high and low values. Rather than hard changes in parameters such as servo locations or
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controller gains between flight modes, linearly interpolating with this function will give a smoother
transition. Please note that the variable must be of float type to properly work with this function.
Inputs to the function include the variable to be modified (such as controller gains, or direct
scaled motor or servo commands), a minimum bound on that variable, maximum bound, time to
complete the fade between the bounds in seconds, current desired state (0 for minimum bound,
1 for maximum bound), and loop rate in Hz (default code is 2000 which should be used unless
changed in calling loopRate()). The function returns the modified variable for the current loop
iteration. The state of either 0 or 1 corresponds to the desired value of the parameter, either
the minimum specified or the maximum specified. This function is intended to be called within
controlMixer() where changes in dynamic configuration may be taking place, and may be toggled
within a logical statement monitoring the state of an auxiliary radio channel. An example of this
use case is included in controlMixer().

8.19.1 Important Variables

There are no important variables pertaining to this function.

8.20 floatFaderLinear2()

This function is a variation on the floatFaderLinear() function. It takes in a float variable to be
modified, desired new position, upper value, lower value, fade time, and the loop frequency, and
linearly fades the given variable’s current value up or down to the desired value. This function is a
little more versatile than the floatFaderLinear() function in that it can be used to fade a variable
between more than two endpoints.

8.20.1 Important Variables

There are no important variables pertaining to this function.

8.21 switchRollYaw()

This function switches the roll des and yaw des variables. The intended use case for this function
is for tailsitter-type configurations where the roll and yaw axis switch between hover and forward
flight. This function takes two integers (either -1 or 1) as inputs, corresponding to the desired
reversing of the output roll des and yaw des variables. For example, switchRollYaw(-1, 1) will
reverse the output roll des variable (now the original yaw des, but reversed), but not the output
yaw des variable (now the original roll des). While the majority of control mixing for transition
vehicles is done in the controlMixer, this function must be called right before the selected PID
controller in the main loop in it’s own conditional statement.

Please note that this function may be replaced in a future release by a function that switches
the IMU data orientation so that the attitude can still be estimated even when the IMU is tilted
at 90 degrees, allowing the use of the angle controllers in both flight modes.

8.21.1 Important Variables

There are no important variables pertaining to this function.
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8.22 loopRate()

This function takes in a desired loop rate in Hz and idles at the end of the main flight controller
loop until this rate has been achieved, maintaining a constant loop rate. The default loop rate is
set to 2000 Hz, and all filtering parameters by default are tuned to this frequency. The code is able
to run above 3000 Hz, but IMU data is not available at this rate and filtering parameters would
need to be re-tuned. The selected rate gives excellent performance and leaves plenty of additional
computing power to remain well within 2000 Hz if additional/custom code is implemented.

8.22.1 Important Variables

There are no important variables pertaining to this function.

8.23 setupBlink()

This is a simple utility function for the void setup() to indicate specific operations have occurred
with a prescribed blink on the Teensy’s onboard LED. By default, this function is only called once
at the end of the void setup() to indicate the code is entering the main loop with 3 quick blinks.
It requires 3 values be passed into it: the number of desired blinks, the time in ms to be on, and
the time in ms to be off for the blinks. Please note that pin 13 on the Teensy 4.0 is reserved for
the onboard LED and should not be used for any other purpose.

8.23.1 Important Variables

There are no important variables pertaining to this function.

8.24 loopBlink()

This is a simple utility function for the void loop() to indicate that the loop is properly running
on the Teensy’s onboard LED. By default, a quick blink every 1.5 seconds indicates the main loop
is running. Please note that pin 13 on the Teensy 4.0 is reserved for the onboard LED and should
not be used for any other purpose.

8.24.1 Important Variables

There are no important variables pertaining to this function.

8.25 Print Statements for Troubleshooting

There are multiple functions used for troubleshooting and ensuring proper operation of the flight
controller for first time setup. These functions print data to the serial monitor (or plotter) at 100
Hz and all follow the same formatting, which can be borrowed for additional troubleshooting print
statements.
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8.25.1 printRadioData()

Variable Name Expected Value Range Location Where Generated/Modified

channel 1 pwm,
channel 2 pwm,

...
1000 to 2000 getCommands() function in main loop

Table 14: Variables printed to the serial monitor in the printRadioData() function.

8.25.2 printDesiredState()

Variable Name Expected Value Range Location Where Generated/Modified

thro des 0 to 1 getDesState() function in main loop

roll des -maxRoll to maxRoll getDesState() function in main loop

pitch des -maxPitch to maxPitch getDesState() function in main loop

yaw des -maxYaw to maxYaw getDesState() function in main loop

Table 15: Variables printed to the serial monitor in the printDesiredState() function.

8.25.3 printGyroData()

Variable Name Expected Value Range Location Where Generated/Modified

GyroX,
GyroY,
GyroZ,

∼-250 to 250,
zero at rest

getIMUdata() function in main loop

Table 16: Variables printed to the serial monitor in the printGyroData() function.

8.25.4 printAccelData()

Variable Name Expected Value Range Location Where Generated/Modified

AccX,
AccY

∼-2 to 2,
zero at rest

getIMUdata() function in main loop

AccZ
∼-2 to 2,
1 at rest

getIMUdata() function in main loop

Table 17: Variables printed to the serial monitor in the printAccelData() function.

8.25.5 printMagData()

Variable Name Expected Value Range Location Where Generated/Modified

MagX,
MagY,
MagZ,

∼-400 to 400 getIMUdata() function in main loop

Table 18: Variables printed to the serial monitor in the printMagData() function.
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8.25.6 printRollPitchYaw()

Variable Name Expected Value Range Location Where Generated/Modified

roll IMU,
pitch IMU,
yaw IMU

-90 to 90 Madgwick() function in main loop

Table 19: Variables printed to the serial monitor in the printRollPitchYaw() function.

8.25.7 printPIDoutput()

Variable Name Expected Value Range Location Where Generated/Modified

roll PID,
pitch PID,
yaw PID

∼-1 to 1
controlANGLE(), controlANGLE2(), or
controlRATE() function in main loop

Table 20: Variables printed to the serial monitor in the printPIDoutput() function.

8.25.8 printMotorCommands()

Variable Name Expected Value Range Location Where Generated/Modified

m1 command PWM,
m2 command PWM,
m3 command PWM,
m4 command PWM
m5 command PWM,
m6 command PWM

120 to 250 (OneShot125) scaleCommands() function in main loop

Table 21: Variables printed to the serial monitor in the printMotorCommands() function.

8.25.9 printServoCommands()

Variable Name Expected Value Range Location Where Generated/Modified

s1 command PWM,
s2 command PWM,
s3 command PWM,
s4 command PWM
s5 command PWM,
s6 command PWM,
s7 command PWM

0 to 180 scaleCommands() function in main loop

Table 22: Variables printed to the serial monitor in the printMotorCommands() function.
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8.25.10 printLoopRate()

Variable Name Expected Value Range Location Where Generated/Modified

dt * 1,000,000

500 (for 2000Hz loop rate)
*should remain below
500 when main loop
is unregulated with

loopRate()

Top of main loop

Table 23: Variables printed to the serial monitor in the printLoopRate() function.

9 Tutorials

Please note that for any of these tutorials, while testing functionality or modifying the code, motors
should have propellers removed or be unplugged entirely for safety. If there are any questions
or concerns with any of these processes, a dRehmFlight VTOL support thread is available on
RCGroups.com: RCGroups Support Thread

9.1 General Instructions for First-Time Setup

This section outlines the road map of required tasks contained within this document to go from
absolute beginner to this code to flying. This represents the absolute minimum required effort to
get flying, but it is recommended to read the entire documentation first to get a feel for dRehm-
Flight before trying to work with it.

1. Hardware Requirements: Ensure that you have the required hardware components to assemble
the basic flight controller. Details can be found in the Hardware Requirements section of this doc-
ument.

2. Hardware Setup: Follow the default recommended hardware setup procedures, outlined in the
Hardware Setup section of this document.

3. Mounting the Flight Controller: Follow the Mounting the IMU to Your Aircraft tutorial in the
Tutorials section of this document.

4. Setting Up Your Radio Connection: Follow the ’Setting Up Your Radio Connection’ tutorial in
the Tutorials section of this document.

5. Verifying Good IMU Data: Follow the ’Verifying Good IMU Data’ tutorial in the Tutorials
section of this document.

6. Control Mixing: It is finally time to customize the flight control code for your specific application.
Follow the three Control Mixing tutorials contained within the Tutorials section of this document.
Take note of the motor and servo assignments you make for each variable and the corresponding
pin number for the default setup in Table 1.

7. Verify Your Code Changes: Using the print statements for troubleshooting (details contained
within the Functions List section of this document), verify that important variables such as motor
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or servo commands are behaving as expected in the Arduino serial monitor.

8. Plug In Your Hardware: Plug in the ESCs and servos according to the assignments you made
in step 6.

9. Select the Controller Type and Tune: Follow the Controller Selection and Tuning Tutorial in
the Tutorials section of this document. Here, the controller type (rate, basic angle, or advanced
angle) is selected and steps to tune for your vehicle are outlined.

These steps represent the basic steps needed to get up and running as quickly as possible. It is
highly recommended to read the full documentation to gain a complete understanding of the code
in its entirety so that you will be equipped to modify it in any way required for your application.

9.2 Pin Selection

For a custom hardware setup different from the default recommended setup for hobbyists, choosing
pins on the board is an important process. The following procedure for an example hardware setup
is used to demonstrate the process of proper pin selection, documentation, and modification of the
code.

For this example, a tricopter configuration is required. Three OneShot125 ESCs are used to
control the motors, and 2 servos are required: one for tilting one of the motors for yaw control,
and another for a simple payload drop. In addition to the default IMU and selected PPM receiver,
an analog pressure sensor needs to interface with the board, as well as an optical flow sensor that
communicates with the board over a serial connection, and finally a landing light system that is
triggered by a digital high or low signal. Rather than modify the existing default hardware setup
for this use case, a custom setup is desired that will allow for many more sensors and actuators in
the future if needed.

The first step is to establish all of the required inputs/outputs and their functionality so that
a pin with correct functionality can later be assigned. Table 24 has compiled the information for
this example setup.

Component Requirement

IMU I2C Bus - SCL and SDA

PPM Receiver Single digital pin

Motor1 Digital pin

Motor2 Digital pin

Motor3 Digital pin

Tilt Servo Digital PWM pin

Drop Servo Digital PWM pin

Pressure Sensor Analog pin

Optical Flow Sensor Serial RX pin

Landing Lights Digital pin

Table 24: Establishing required pin functionality for the example case.

Next, pins must be assigned that can fulfill these requirements. For this case, we will arbitrarily
attempt to reserve as many analog and serial pins as possible (perhaps more analog pressure sensors
or additional sensors using a serial connection are planned for later). The first pins assigned are
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the I2C bus pins reserved for the IMU, which are on pins 18 and 19. This I2C bus is the default
within the code (so it will not require modification), though it does take up 2 analog pins. All I2C
pins lie on an analog pin on the board, so this sacrifice of 2 analog pins must be made. Next, pin
12 is semi-arbitrarily selected for the PPM receiver pin in order to avoid any analog or serial pins.
Similarly, three digital pins (2, 3, and 4) are reserved for the motors. Two PWM-enabled digital
pins are also allocated to the servos on pins 5 and 6. Analog pin 23 is semi-arbitrarily selected for
the analog pressure sensor, and the optical flow sensor is assigned to RX1 and TX1 on pins 0 and 1.
Finally, the digital landing light pin is assigned to 9, avoiding RX2 and TX2, as well as any analog
pins which we have set out to preserve. Table 25 shows the final pin selection, and Figure 25 shows
the physical pin location on the board. Please note that in addition to these pin assignments, the
board must be powered on the 5 V Vin pin and grounded on any ground pin. The Teensy 4.0 has
many more pins on the back side pads, however these are difficult to solder and otherwise access,
so they were ignored for this example. They may be considered for more advanced setups with far
more i/o requirements and a user who is proficient at soldering.

Component Requirement Pin Assignment

IMU I2C Bus - SCL and SDA SCL0 19, SDA0 18

PPM Receiver Single digital pin 12

Motor1 Digital pin 2

Motor2 Digital pin 3

Motor3 Digital pin 4

Tilt Servo Digital PWM pin 5

Drop Servo Digital PWM pin 6

Pressure Sensor Analog pin 23

Optical Flow Sensor Serial RX and TX pin RX1 0, TX1 1

Landing Lights Digital pin 9

Table 25: Selecting pins for the example case.
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Figure 25: Selected pins on the Teensy 4.0 for the example case.

Now that the analog pins and serial pins have been carefully reserved and every i/o requirement
for the vehicle has been met, the selected pin assignments need to be updated in the code’s pin
declaration section. Additional motors or servos not used may be commented out in the pin dec-
laration section as well as throughout the code where command variables for those extra actuators
remain. These can be found in the void setup() section (comment out the pinmode declarations
for the extra servos and motors as well as servo object creating and writing), in controlMixer(),
scaleCommands(), throttleCut(), and commandMotors().

9.3 Setting Up Your Radio Connection

Tutorial Video:
https://www.youtube.com/watch?v=Wdc1o6eSsMo

After successful completion of the physical flight controller assembly, the first thing to do is to
compile and upload code to it and check for proper connection to the radio receiver.

First, in the user-specified defines section of the code, uncomment your receiver type: PWM,
PPM, SBUS, or DSM. Whichever ones not being used should remain commented out. Next, in
the top of the void loop(), uncomment the printRadioData() function and ensure that no other
printing functions are uncommented. The code is now ready to be uploaded to the board.

Ensure that the receiver is properly connected to the flight controller assembly, either following
the suggested default setup, or your custom setup. Please follow the proper channel convention
(Table 2) if using a standard PWM receiver, as pins can be plugged in and interchanged to get the
correct functionality. If using a PPM, SBUS, or DSM receiver and you are unable to change the
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channel mapping within your radio according to Table 2, the end of this section will describe how
to adjust the code for proper operation.

Once all connected and the code has been uploaded to the powered board, open the Arduino
serial monitor and you should see the 6 PWM channels on screen (this usually takes about 5-6
seconds for the code to finally begin running the main loop as indicated by a short blink every
1.5 seconds). If the serial monitor looks like Figure 26 and moving the transmitter sticks does not
change any of the values, then there is a problem with the connection between the receiver and
flight controller. The displayed values are the default failsafe values, which failSafe() is writing to
the radio channel variables channel X PWM after detecting a bad radio connection. Check that
the receiver is properly powered, bound to the transmitter, and all connecting wires between the
receiver and flight controller have continuity.

Figure 26: Arduino serial monitor showing radio data where there is an issue with the connection
and radio failsafe is being triggered.

If the radio is properly connected, the serial monitor should look similar to Figure 27 where
values are not yet centered, but they respond to transmitter stick movement. First, check that each
channel corresponds to the correct functionality in Table 2 i.e. CH1 should respond to throttle stick
input, CH2 should respond to roll input, CH3 should respond to pitch input, CH4 should respond
to yaw input, and CH5 and CH6 should respond to the auxiliary switch inputs. If this is not the
case, change the physical pin placement for the channels for a PWM type receiver. The end of this
section details how to correct this for a PPM or SBUS type receiver.
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Figure 27: Arduino serial monitor showing radio data where the radio is properly connected but
channels are not properly centered.

Next, verify correct direction for each channel and reverse incorrect channels within the radio
manually. CH1 (throttle) should increase in value with increasing throttle. CH2 (roll) should
increase in value with right roll input. CH3 (pitch) should increase in value with pitch down (stick
upwards) input. CH4 (yaw) should increase in value with left yaw input. Please take note of your
radio’s auxiliary switch assignment for CH5 and CH6–by default, channel 5 is used for throttle
cut when above 1500, and channel 6 is a free channel. You may wish to reverse either of these or
reassign physical switches within your radio for more comfortable operation.

Next, center all sticks on the transmitter including throttle and apply subtrim within your
radio to each channel to center Ch1-4 on 1500. It will be difficult to get it perfect with your radio’s
resolution, but within 5 is close enough. CH5 and CH6 are used as ’binary’ switches (or sometimes
channel 6 can be a 3 position switch or even a fader) in which there is no real ’center.’ Just be sure
that they have a definitive ’high’ (above 1500) and a definitive ’low’ (below 1500).

Once correct direction corresponding to stick movement has been verified and everything has
been centered, it is time to adjust endpoints for each channel within your radio. Adjust each
channel such that the minimum value is 1000, and the maximum value is 2000. Within 5 is close
enough. Figure 28 shows the Arduino serial monitor after the radio has been properly setup with
the throttle stick in the lowest position.
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Figure 28: Arduino serial monitor showing radio data where the radio is properly connected and
all channels have been adjusted correctly.

If using a PPM, SBUS, or DSM receiver and the channel mapping is not correct as indicated by
incorrect values in the serial monitor for certain stick movement, the code will need to be modified.
In the getCommands() function, the order in which radio channels are retrieved can be changed
accordingly to match the correct channel mapping given in Table 2.

9.4 Verifying Good IMU Data

Tutorial Video:
https://www.youtube.com/watch?v=pi4PiBFPt70

After verifying good and proper communication with the radio receiver, the next step for first
time setup is to calibrate and verify proper functionality of the IMU.

First, in the user-specified defines section of the code, uncomment your IMU type: MPU6050 or
MPU9250. Whichever ones not being used should remain commented out. You may also select the
gyro and accelerometer sensitivity ranges. The default gyro and accelerometer sensitivity values
will give the cleanest attitude estimate, but if a higher maximum angular velocity is needed (for
example on an aerobatic aircraft), then a higher value can be chosen. A higher accelerometer value
may also be needed if flying an aircraft that undergoes very high accelerations.

Next, ensure that the IMU is properly connected to the flight controller assembly following the
suggested default setup and then compile and upload the code to the powered flight controller.
Immediately open the serial monitor. Accelerometer and gyro calibration values will print to the
serial monitor after a few seconds. Copy and paste these in the user-specified variables section of
the code, then go to the void setup section of the code and comment out the calculate IMU error()
function, which was used to calculate and print the calibration values. The IMU should now be
calibrated and does not need to be re-calibrated at every power up. It is still good practice to
follow the following steps for first time calibration to ensure the calibration values are correct:

In the top of the void loop(), uncomment the printGyroData() function and upload the code to
the flight controller. Open the serial plotter or monitor and verify that all three axis of the IMU’s
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gyro are properly zeroed (or at least within 5 degree/sec of 0). There will be a small amount of
noise but that is okay. Rotate the IMU about each axis following the convention in Figure 17 and
verify that the values roughly correspond to your movement.

Figure 29: Arduino serial plotter showing proper IMU gyro data.

Next, in the top of the void loop(), uncomment the printAccelData() function and ensure that
no other printing functions are uncommented. Level the IMU facing upwards and compile and
upload the code to the powered flight controller. Open the serial plotter or monitor and verify that
the x and y axis of the IMU’s accelerometer are properly zeroed (or at least within 0.05 of zero)
and that the z axis reads very close to 1 g. If on another planet with different gravity than that of
Earth, the z axis will read something different. Support for different planets’ gravity is sadly not
planned for future releases. Move the IMU about each axis following the convention in Figure 17
and verify that the values roughly correspond to your movement.
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Figure 30: Arduino serial plotter showing proper IMU accelerometer data.

If using the MPU9250 IMU, uncomment the calibrateMagnetomer() function at the end of the
void setup(). Compile and upload the code to the board and follow the instructions printed to
the serial monitor. Magnetometer calibration parameters will be printed to the serial monitor
upon completion which should be added to the code in the user-specified variable section. This
calibration process needs to be completed whenever flying in a new area.

Finally, in the top of the void loop(), uncomment the printRollPitchYaw() function and ensure
that no other printing functions are uncommented. Level the IMU facing upwards and compile and
upload the code to the powered flight controller. Open the serial plotter or monitor and verify that
when the IMU is level, all readings are approximately zero (yaw may slowly drift when using the
MPU6050 which is okay). Move the IMU about each axis following the convention in Figure 17
and verify that the angles in degrees roughly correspond to your movement. Note that the angles
will take a few seconds immediately after power power up to converge on the correct attitude. For
this reason, it is best practice to wait a few seconds after power up before arming motors when you
are out flying.
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Figure 31: Arduino serial plotter showing proper IMU angle data. When using the MPU6050, the
yaw estimate may slowly drift. When using the MPU6050, the yaw estimate will be noisier but
should not drift.

Any errors encountered during this process could be the result of many things. If any of
the gyro, accelerometer, or angles checked were slightly off, repeat the first step using the calcu-
late IMU error() function to get new IMU calibration values. If this does not work, the IMU itself
may be defective, in which case try a different board. If that does not solve the issue, the wiring
or soldering may be faulty–this can be checked with a simple continuity test between the Teensy
and the IMU.

9.5 Mounting the IMU to Your Aircraft

Tutorial Video:
https://www.youtube.com/watch?v=pi4PiBFPt70

It is important to mount the IMU to the aircraft in the correct orientation and in such a way to
mitigate vibration. A thick foam double-sided tape is recommended to attach the underside of the
IMU to the aircraft. Figure 32 shows this process, where 2-3 layers of foam tape are used to build
up a ˜6mm pad under the IMU. Another option is to use hot glue and 6mm foamboard to mount
to the IMU, and then the aircraft. Anything that rigidly attaches the IMU to the airframe while
still maintaining a ’soft’ connection between the two will suffice. If not following the suggested
hardware setup where the IMU is wired separately from the Teensy, but rather the two are located
on the same breakout board for example, the entire flight controller board must be soft-mounted
and in the correct orientation.

49

https://www.youtube.com/watch?v=pi4PiBFPt70


Figure 32: Attaching thick foam tape to the underside of the IMU.

Figure 17 shows the axis convention used for IMU data and vehicle orientation. This should
be followed when mounting the IMU to the airframe. Choose a rigid location near the aircraft’s
center of gravity and mount the IMU using the foam tape or foam and hot glue method described
above. Please note the IMU’s orientation in Figure 33 where the front of the aircraft is noted and
the exposed circuit components are facing up toward the sky. When using the suggested default
hardware setup, the rest of the flight controller components can be mounted anywhere else on the
aircraft.

Figure 33: Mounting the IMU and remaining flight controller components in the correct orientation.

9.6 Alternative Actuator Outputs: OneShot125 and Conventional PWM

By default, the code supports 6 ESCs using OneShot125 protocol, and 7 servos/ESCs using con-
ventional PWM control. Please see the suggested default hardware setup section for information
regarding the i/o capability of the default code. This section explains the required process to add
additional actuator outputs for a custom setup in which the default outputs are not sufficient.

9.6.1 Adding Another OneShot125 Controlled Motor

To add another OneShot125 controlled motor, please follow these steps to modify the code:
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1. It is assumed that the pin selection tutorial has been followed and pins are properly reassigned
within the code in the pin declaration section first. For this example, the new motor pin variable
will be denoted ’m7Pin’.

2. In the bottom of the global variable declaration section, add ’... command scaled’ and ’... command PWM’
variables for the new motor. In this case, they will be named m7 command scaled and m7 command PWM.

3. In the top of void setup() in the pin initialization section, initialize the new pin as an output
using pinMode(m7Pin, OUTPUT).

4. Toward the bottom of void setup() in the motor arming section, write a value of 125 to
m7 command PWM. This section of the code is used to write a low pulse (125 us) to each motor
command variable before writing out to the pins using commandMotors().

5. In controlMixer(), add the m7 command scaled value to the list of motors, and assign whatever
stabilization output is required for that motor.

6. In scaleCommands(), add the m7 command PWM assignment:

m7 command PWM = m7 command scaled*125 + 125;

as well as the constraint command:

m7 command PWM = constrain(m7 command PWM, 125, 250);

These two lines are used to transform the newly created ... command scaled variable into a ... command PWM
variable, which is in the proper constrained range to be written out the motor pins.

7. In throttleCut(), write a value of 120 to the new ... command PWM value.

8. In commandMotors(), follow the general structure within to expand for the new motor, as it
only accommodates 6 motors by default.

9.6.2 Adding a PWM Controlled Servo or Motor

To add another PWM controlled servo or motor, please follow these steps to modify the code:

1. It is assumed that the pin selection tutorial has been followed and pins are properly reassigned
within the code in the pin declaration section first. For this example, the new servo PWM pin
variable will be denoted ’servo8Pin’.

2. Right below the pin declaration section, add a new PWMServo object, ’servo8’.

3. In the bottom of the global variable declaration section, add ’... command scaled’ and ’... command PWM’
variables for the new servo. In this case, they will be named s8 command scaled and s8 command PWM.

4. In the top of void setup() in the pin initialization section, initialize the new pin as an output for
the newly created servo object using servo8.attach(servo8Pin, 900, 2100).
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5. Toward the bottom of void setup() in the servo arming section, write a value of 0 to the servo8
object using servo8.write(0). This section of the code is used to write a low value to the servos
(particularly, the ESCs to arm them) before entering the main loop.

6. In controlMixer(), add the s8 command scaled value to the list of servos, and assign whatever
stabilization output is required for that servo.

7. In scaleCommands(), add the s8 command PWM assignment:

s8 command PWM = s8 command scaled*180;

as well as the constraint command:

s8 command PWM = constrain(s8 command PWM, 0, 180);

These two lines are used to transform the newly created ... command scaled variable into a ... command PWM
variable, which is in the proper constrained range to be written out the servo pins.

8. If using the servo to command an ESC using conventional PWM, in throttleCut(), write a value
of 0 to the new ... command PWM variable.

9. In the actuator command section of the void loop(), write out the ... command PWM variable
to the new servo object: servo8.write(s8 command PWM).

9.7 Calibrating ESCs

The calibrateESCs() function in the void setup() (commented out by default) can be used to
calibrate ESC endpoints. This may be useful if you experience trouble arming your motors, or
maximum throttle stick command to the motors does not equate to full power as you would expect.

To calibrate your ESCs, first remove all props from the motors! Then, turn on your transmitter
with the throttle stick at maximum throttle and uncomment the calibrateESCs() function in the
void setup() section of the code. Upload the code to the board. Unplug the Teensy from the
computer, and power up your full system with the flight battery such that the Teensy powers on
and the ESCs/motors receive power. The ESCs will begin to go through their calibration beeping
sequence, after which, lower the throttle stick on the transmitter to it’s lowest position. The ESCs
should complete their calibration and you should hear their arming beep sequence. Check that
they properly respond to throttle stick input. Note that you can calibrate either OneShot125 ESCs
on the motor output pins, or PWM ESCs on the servo output pins; all output pins are linked to
this throttle pass through functionality so that ESCs can be calibrated.

Comment back out the calibrateESCs() function in the void setup() and upload the code to the
board. The ESCs will be calibrated, and the rest of the code will function as usual.

9.8 Control Mixing: Basic Fixed Dynamics

Control mixing means to assign correct stabilization of each axis to the actuator outputs so that
they all work to correctly stabilize the vehicle. This is done in the controlMixer() function where
the thro des, roll PID, pitch PID, and yaw PID variables are assigned to the ... command scaled
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variables. The ... command scaled variables should have magnitude between 0 and 1, since thro des
is scaled from 0 to 1, and with correctly tuned PID values, roll PID, pitch PID, and yaw PID will
be well within -1 to 1. Assignment for a standard X quadrotor configuration is provided as an
example in the default code, where motor 1 is the front left, motor 2 is the front right, motor 3 is
the back right, and motor 4 is the back left:

m1 command scaled = thro des - pitch PID + roll PID + yaw PID;
m2 command scaled = thro des - pitch PID - roll PID - yaw PID;
m3 command scaled = thro des + pitch PID - roll PID + yaw PID;
m4 command scaled = thro des + pitch PID + roll PID - yaw PID;

Figure 34: Motor configuration for basic quadrotor mixing example.

The best way to decide assignment and sign of the stabilized axis variables roll PID, pitch PID,
and yaw PID is through trial and error with propellers removed from the motors. If there is a
motor on the centerline of the vehicle toward the nose, then it can be assumed that that motor,
when spun up and slowed down, will correspond to a response in pitch. Only pitch PID should be
assigned to that motor (in addition to thro des if that motor should respond to throttle input too).
If there are two aileron servos for a conventional fixed wing platform, then one servo should receive
+roll PID and the other -roll PID (they may be same size as well, depending on the orientation
the servo is mounted). Please note that servos are configured such that 0 is minimum throttle if
being used for a PWM ESC, and 1 is maximum throttle. As a result, an offset of 0.5 should be
added to the ... command scaled servo variable to center the servo.

After removing propellers from all motors, the flight controller can be powered and the assign-
ments to each actuator checked. For motors, lowering the aircraft toward that motor should cause it
to briefly spin up. This indicates that the flight controller is stabilizing in the correct direction. For
servos, for example on a fixed wing platform, pitching the aircraft back should cause the elevator
to actuate downward. If any of these are reversed, the sign of the assigned stabilized axis variable
roll PID, pitch PID, or yaw PID for that actuator should be flipped.

One final sanity check for the assignments involves placing the aircraft on the ground and
moving the transmitter sticks. If commanding a right roll for a quadrotor, for example, both of
the left motors should spin up. If this is opposite, but the motors stabilize correctly when lowing
the quadrotor to the right side, then the aileron stick in the radio is reversed. Please see the radio
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connection setup tutorial for proper setup of your transmitter.
After proper assignment is verified, the user is free to scale the stabilized axis variables or add

custom offsets to each motor or servo. Scaling the assignments by multiplying by a coefficient may
be useful in the case of a particular motor or servo requiring less stabilization or total travel due
to it having a more or less control effectiveness (due to size of motor/control surface, or position
relative to the aircraft’s center of mass). Custom offsets are useful for centering control surfaces
as a form of sub trim. It is recommended to create custom variables within the controlMixer()
function for these purposes which can quickly and easily be tuned. However, please note that if
these variables are defined within the function, they cannot be modified by other parts of the code.
To do this, they must be declared before the void setup() section of the code. Please note that the
... command scaled variables modified in controlMixer() should always have a value between 0 and
1. This means that any scaling or offsetting should respect that at the risk of saturating a motor
to zero or full throttle, or a servo to full deflection. For example, stabilized axis variables should
only be scaled between 0.0 to 1.0, and offsets should remain between 0.0 and 1.0 as well.

9.9 Control Mixing: Unstabilized Commands Direct From the Transmitter

Please thoroughly read and understand the basic fixed dynamics control mixing tutorial first before
reading this section.

Direct, unstabilized commands from the transmitter can be applied to the ... command scaled
variables in controlMixer() as well using the roll passthru, pitch passthru, and yaw passthru vari-
ables. For this first example, we will consider direct control of an elevator servo (arbitrarily assigned
to servo 5) in a fixed wing type aircraft. The ... passthru variables are all constrained within +/-
0.5, which means when assigned to the ... command scaled variables, they will correctly stay be-
tween 0 and 1 when an offset of 0.5 is added. This offset is only needed if commanding a servo
variable to center it. Back to the simple elevator servo example, the assignment will look like:

float pitchAmount = 0.7;
float pitchOffset = 0.5;
s5 command scaled = pitchAmount*pitch passthru + pitchOffset;

The pitchAmount and pitchOffset variables are arbitrarily created by the user in controlMixer()
(or before the void setup() if they are to be modified elsewhere in the code). pitchAmount, in this
example, will scale the total amount of elevator ’throw’. A value of 1 will max out the servo
bounds, and a value of 0.5 will cause the servo to only move half of the total available amount. The
pitchOffset variable is used to ’trim’ the elevator servo. A value of 0.5 will center the servo, and
can be further adjusted to properly level the control surface. Again, these two variables must be
created and tuned by the user in controlMixer(). If the elevator moves in the incorrect direction, a
negative sign can be added in front of the pitchAmount scaling factor to reverse the direction.

For the next example, we will consider basic, unstabilized elevon mixing for two elevon servos
(arbitrarily assigned to servos 6 and 7). Following the same process in the above elevator servo
example, we can assign both roll and pitch to both of the servos. Generally for elevon mixing,
both servos receive the same sign of roll, and opposite sign of elevator (because of how servos are
generally symmetrically mounted):

float pitchAmount = 0.7;
float rollAmount = 0.5;
float leftElevonOffset = 0.54;
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float rightElevonOffset = 0.6;
s6 command scaled = pitchAmount*pitch passthru + rollAmount*roll passthru + leftElevonOff-

set;
s6 command scaled = -pitchAmount*pitch passthru + rollAmount*roll passthru + rightElevonOff-

set;

For this final example, we will consider unstabilized differential throttle of two wing mounted
motors (arbitrarily assigned to motors 1 and 2) for yaw control. For the motors, the thro des vari-
able should be assigned to the ... command scaled motor variables to give throttle control. Then,
yaw control input is achieved by conducting the same process in the above two examples, this time
with the yaw passthru variable:

float yawAmount = 0.15;
float yawOffset = 0.0;
m1 command scaled = thro des + yawAmount*yaw passthru + yawOffset;
m2 command scaled = thro des - yawAmount*yaw passthru - yawOffset;

Note that one yaw passthru variable is positive and the other is negative. This gives opposite re-
sponse for each of the motors, providing differential throttle. Also note that the chosen yawAmount
(these variables must be created by the user as they need!) is only 15% of the total throttle range.
Too much differential throttle can be problematic and it is recommended to start lower and slowly
work upwards. Finally, the yawOffset variable is created and applied to the motor variables, but
it is 0.0. No offset is required unlike servos which require 0.5 offset to at least center the servo,
though it can be useful for very fine trim adjustments. A significant yawOffset in this case would
cause a motor to spin up even at minimum throttle which is unsafe.

9.10 Control Mixing: Advanced Variable Dynamics

Please thoroughly read and understand the basic fixed dynamics and unstabilized command control
mixing tutorials first before reading this section.

This section covers only the basics the many options for advanced VTOL configurations where
the vehicle dynamics change between different flight modes. This tutorial will serve as the basis for
hybrid type platforms, which can be fully customized to your specific need. In the code, channel
6 is unused, which can be leveraged within controlMixer() to assign 2 different mixing configura-
tions (or 3 if you have a 3 position switch, or almost infinite configurations if you have a slider
assigned to channel 6 in your radio). For the following examples, we will assume channel 6 is on a
two-position switch that toggles between a low PWM value of 1000 and a high PWM value of 2000
on the channel 6 PWM variable. Using a simple if statement, we can toggle between two different
dynamic configurations–a quadcopter for hover, and a conventional airplane (one motor, 2 ailerons,
and an elevator all with no stabilization) for forward flight for this example:

float pitchAmount = 0.7;
float pitchOffset = 0.5;
float rollAmount = 0.65;
float rollOffsetLeft = 0.5;
float rollOffsetRight = 0.58;

if (channel 6 pwm > 1500) { //hover mode
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m1 command scaled = thro des - pitch PID + roll PID + yaw PID; //front left
m2 command scaled = thro des - pitch PID - roll PID - yaw PID; //front right
m3 command scaled = thro des + pitch PID - roll PID + yaw PID; //back right
m4 command scaled = thro des + pitch PID + roll PID - yaw PID; //back left
m5 command scaled = 0; //turn off forward flight motor in hover
s1 command scaled = pitchOffset; //elevator servo, centered and not moving in hover
s2 command scaled = rollOffsetLeft; //left aileron, centered and not moving in hover
s3 command scaled = rollOffsetRight; //right aileron, centered and not moving in hover
}
else if (channel 6 pwm < 1500) { //forward flight mode
m1 command scaled = 0; //turn off in forward flight
m2 command scaled = 0; //turn off in forward flight
m3 command scaled = 0; //turn off in forward flight
m4 command scaled = 0; //turn off in forward flight
m5 command scaled = thro des; //direct throttle control
s1 command scaled = pitchAmount*pitch passthru + pitchOffset; //elevator
s2 command scaled = rollAmount*roll passthru + rollOffsetLeft; //left aileron
s3 command scaled = rollAmount*roll passthru + rollOffsetRight; //right aileron
}

The above code represents a very simple mixing configuration for an aircraft similar to Figure
35. In this example, only a two position switch is used. If your transmitter switch has 3 positions,
then a third if statement with proper bounds on the channel 6 pwm variable (these can be checked
with the printRadioData() function which will display the value received from the radio receiver)
can be used to describe an intermediate ’transition’ flight mode. This transition flight mode may
have stabilization on the hover motors, and stabilization introduced on the control surfaces, for
example.

Figure 35: Simple VTOL configuration that acts like a quadrotor in hover and a conventional fixed
wing aircraft in forward flight.

There are many different variables throughout the code that can be modified within these
’flight mode’ if statements. For example, all controller gain variables can be changed within these
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statements so that there is a set of gains tuned for hover, and a set tuned for forward flight.
The maxAXIS variables declared in the beginning of the code can be changed here as well to
give different control authority between different flight modes. Additionally, scaled servo or motor
command variables ... command scaled can be manually adjusted between flight modes, for example
to actuate a tilt mechanism. Controller types can also be changed between flight modes, but this
must be done in it’s own logical statement in the main loop where the controller function is called.
The basic fading tutorial details the process of fading some of these tuneable variables rather than
having them abruptly change between flight modes. At this point, the customization in control
mixing is at the discretion of the user who is free to employ whatever advanced techniques they
require for their application. Proficiency in Arduino will be a powerful asset for creating incredible
transitioning VTOL vehicles with excellent flying qualities and smooth transitions.

9.11 Basic Fading

A simple function, floatFaderLinear(), is provided to aid with some fading between flight modes
as discussed in the advanced variable dynamics control mixing tutorial. Linearly interpolating
some variables with this function between flight modes will allow for smoother transition and over-
all better performance. Variables of interest to fade between flight modes in the controlMixer()
include controller gains, the maxAXIS variables, servo/motor offset/setpoint variables, or servo/-
motor scaling variables. The floatFaderLinear() function linearly interpolates between two specified
high and low values of a float-type variable. Recall that the main flight control loop is continu-
ously running at 2000 Hz. As a result, traditional delay()-based methods of fading variables or
motor/servo commands cannot be used as they would stall the main flight control loop. floatFader-
Linear(), when called within the controlMixer(), increases or decreases the variable by a certain
small amount for each loop iteration until the minimum or maximum specified amount is reached.
The following example shows the use of this function to fade a controller gain variable between 0.1
and 0.3 at different speeds depending on the direction. Other lines of code within the if statements
(... command scaled assignments) are omitted for clarity:

if (channel 6 pwm > 1500) { //hover mode
Kp pitch rate = floatFaderLinear(Kp pitch rate, 0.1, 0.3, 5.5, 1, 2000);
}
else if (channel 6 pwm < 1500) { //forward flight mode
Kp pitch rate = floatFaderLinear(Kp pitch rate, 0.1, 0.3, 2.5, 0, 2000);
}

The first input to the function is the variable which you wish to modify. The function returns
the modified version of that variable, so that is assigned to the variable itself. The second input
is the minimum desired value of the variable, followed by the maximum desired value. The fourth
input to the function is the fade time, in seconds, which can be different depending on if you are
increasing to the maximum desired value (fifth input a 1) or decreasing to the minimum desired
value (fifth input a 0). The fifth input specifies whether you’d like the fader to increase to the
maximum value (1) or decrease to the minimum value (0). The final input to the function is the
loop rate of the void loop(), which is 2000 Hz by default and should not be modified. Please note
that any variables being used with this function must be declared outside of the controlMixer()
function at the beginning of the code (before the void setup()) so that they are global, not local
variables. These may include scaling variables or offset variables used for motor or servo assignment
as discussed in the advanced variable dynamics control mixing tutorial.
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By leveraging this fading function, you can linearly interpolate between flight modes relatively
simply. For this example, we will only consider a single motor using the m1 command scaled chan-
nel that is used to stabilize roll in hover, with unstablized differential yaw control in forward flight.
The rest of the actuators follow the same procedure, except with their unique mixing assignments:

float fading variable = 0.0; //NOTE: MUST BE DEFINED BEFORE VOID SETUP() TO BE
GLOBAL VARIABLE

if (channel 6 pwm > 1500) { //hover flight mode
fading variable = floatFaderLinear(fading variable, 0.0, 1.0, 5.5, 1, 2000);
//fading variable will fade up to maximum value of 1.0 in 5.5 seconds
}
if (channel 6 pwm < 1500){ //forward flight mode
fading variable = floatFaderLinear(fading variable, 0.0, 1.0, 2.3, 0, 2000);
//fading variable will fade down to minimum value of 0.0 in 2.3 seconds
}
m1 command scaled = fading variable*(thro des + roll PID) + (1.0 - fading variable)*(thro des

- 0.2*yaw passthru);
//fading variable*(HOVER ASSIGNMENTS) + (1.0 - fading variable)*(FF ASSIGNMENTS);
//When fading variable = 1.0 -> hover flight mode. When = 0.0 -> forward flight mode.

We first created a variable to use to fade between flight modes, fading variable, which needs to
be defined before the void setup() of the code so that it is a global variable to work properly. Then
a simple conditional statement monitoring the state of the auxiliary radio channel 6 allows to toggle
between states for this variable for hover and forward flight modes. Using the floatFaderLinear()
function allows us to fade this particular variable up to a value of 1.0 or down to 0.0 in different
amounts of time. Then outside of these conditional flight mode statements, the control mixing is
assigned to the m1 command scaled variable. Note how both hover and forward flight assignments
for this actuator are assigned in the same line of code. The fading variable that was created
is used to multiply the hover assignments (multiplied by fading variable) and the forward flight
assignments (multiplied by (1.0 - fading variable)). Now, when fading variable is equal to 0.0
(denoted for forward flight mode), the hover assignments are multiplied by zero and the forward
flight assignments are multiplied by 1.0. The opposite is true when the fading variable is equal to
1.0 (denoted for hover mode). When fading variable is any value between 0.0 and 1.0, the actuator
assignments are mixed between the two flight modes. If you have a fader on your radio and would
like to use this for transition between flight modes rather than a binary switch, the process is even
simpler. First, create a scaled variable for the auxiliary radio channel you are using within the
getDesState() function to be within 0.0 and 1.0 (similar to how the thro des variable is created
there. Note that the radio channel you are using should give exact endpoint values of 1000 and
2000 in the radio setup). Then simply use this new variable as the fading variable in the above
example for the mixing assignment. No ’if’ statements of fading function required. You can then
fly at any intermediate flight mode as determined by the position of the fader switch on your radio.

9.12 Controller Selection and Tuning

There are three types of PID-based controllers provided with dRehmFlight: rate, basic angle, and
advanced angle. A rate controller commands a desired aircraft rotation rate for each axis while an
angle controller commands a desired aircraft angle for the roll and pitch axis (yaw is always rate
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controlled). More information on the implementation of the three controller types is provided in
the function description section of this document.

The controller type must be selected within the void loop() in the PID controller section. Only
one controller type may be uncommented at a time. Controller gains must be manually adjusted
for each controller type depending on which one is being used. Please note that the following
tutorials are intended for tuning the controllers for a hovering aircraft. Tuning for a fixed wing
type aircraft follows a much different procedure, though it is generally easier to do with a passively
stable platform.

9.12.1 Rate Controller

The first step in tuning the rate controller after uncommenting the controlRATE() function in
the void loop() is to set the desired maximum rotation rates. This is done in the user specified
variable declaration section with the maxRoll, maxPitch, and maxYaw variables, which correspond
to maximum rates in degree/second when using the rate controller. Good starting values for roll
and pitch are about 150 degrees/second, and 120 degrees/second for yaw, though these can be
tuned later to taste. These values should not exceed 250 degrees/second.

Next, the P, I, and D variables for each axis ... roll rate, ... pitch rate, and ... yaw should be
set to starting values. The default code provides well-tuned values for a 1000 g quadrotor vehicle
with 7 inch propellers. Take note of these to understand appropriate increments to change the
gains by later, and set all I and D terms to 0. Lower the P terms from the default by about 50%
and power up the vehicle to check that the motors are stabilized correctly by moving the vehicle
and the transmitter sticks. Attempt a brief flight (if possible, anchored down) and note the flight
characteristics. If the vehicle is very slow to respond and there are no significant oscillations, begin
to increase the P gains for each axis by about 15-20%. Do this until oscillations begin, in which
case it is time to slowly dial in some D gain. Please note that the value of the default D gain is
very low. Increasing these parameters too high will cause the motors to overheat. In very small
increments (15% of the default values), increase the D gains for each axis appropriately. You should
notice that the oscillations from increasing the P gains begin to be dampened out. At this point,
you may begin increasing the P gains very slightly in conjunction with the D gains to get a snappier
response. Be very careful not to increase the D gains too high. If the motors are becoming too hot
or producing weird noises while flying, you have gone too far. Dial the controller gains back to a
safe level where the response is still acceptable. Please note that this process requires individual
treatment of each axis which can be done at the same time, but should be thought of as independent
things being tuned.

Once the P and D gains are adequately tuned, you may notice that the vehicle has some steady
state error i.e. it will want to very slowly roll or yaw even when no rates are being commanded
from the transmitter. It is now time to dial in the I terms in increments of about 15% of the default
gain values. Do this for each axis until letting go of the sticks ’parks’ the vehicle at the attitude you
let go of the sticks at and there is no more drift. No more I term is needed, as too much can cause
low frequency oscillations. The controller is now tuned for normal flight, but can be fine-tuned to
your preference.

9.12.2 Basic Angle Controller

Please note that the yaw axis is always stabilized using the method described in the rate controller
tuning tutorial, regardless of selected controller type.

The first step in tuning the basic angle controller after uncommenting the controlANGLE()
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function in the void loop() is to set the desired maximum angles for roll and pitch. This is done
in the user specified variable declaration section with the maxRoll and maxPitch variables, which
correspond to maximum angles in degrees when using the angle controller. Good starting values
for roll and pitch are about 30 degrees, though these can be tuned later to taste. These values
should not exceed 60 degrees.

Next, the P, I, and D variables for each axis ... roll angle and ... pitch angle should be set to
starting values. The default code provides well-tuned values for a 1000 g quadrotor vehicle with
7 inch propellers. Take note of these to understand appropriate increments to change the gains
by later, and set all I and D terms to 0. Lower the P terms from the default by about 50%
and power up the vehicle to check that the motors are stabilized correctly by moving the vehicle
and the transmitter sticks. Attempt a brief flight (if possible, anchored down) and note the flight
characteristics. Most likely, there will be some oscillations indicating that it is time to dial in some
D gain in increments of about 20% of the default value. Do this until the oscillations are dampened
out. The P gain may still be too low for adequate control authority, so begin to increase the P gain
in 15% increments, increasing the D gain in similar increments as needed. Test the response by
commanding a fast roll or pitch change (for example from level to 20 degrees and back). You should
observe that the vehicle quickly moves to the desired attitude with no oscillations. Oscillations
indicate that more D gain is needed, whereas a very slow response indicates that the system is
over-damped and the D gain should be lowered. This process can be refined as the P and D gains
are slowly increased together. However past a certain point, the gains will be too high and you may
notice that the aircraft has a ’noisy’ attitude i.e. it seems to jitter in the air despite a very good
response to control inputs. In this case, the gains have been tuned too high; dial the controller
gains back to a safe level where the response is still acceptable and the jitters have stopped. Please
note that this process requires individual treatment of each axis which can be done at the same
time, but should be thought of as independent things being tuned.

Once the P and D gains are adequately tuned, you may notice that the vehicle has some steady
state error i.e. it will want to drift even when no angles are being commanded from the transmitter.
It is now time to dial in the I terms in increments of about 15% of the default gain values. Do this
for each axis until letting go of the sticks brings the vehicle to level and it does not drift around very
much. No more I term is needed, as too much can cause low frequency oscillations. The controller
is now tuned for normal flight, but can be fine-tuned to your preference.

9.12.3 Advanced Angle Controller

Please note that the yaw axis is always stabilized using the method described in the rate controller
tuning tutorial, regardless of selected controller type.

The first step in tuning the advanced angle controller is to tune the rate controller and set
good gains for that. The advanced angle controller’s inner loop uses the exact same rate controller
and gains as the standard rate controller, so this must be tuned well first in order for the outer
loop angle controller to work well. Uncomment the controlANGLE2() function in the void loop()
and set the desired maximum angles for roll and pitch. This is done in the user specified variable
declaration section with the maxRoll and maxPitch variables, which correspond to maximum angles
in degrees when using the angle controller. Good starting values for roll and pitch are about 30
degrees, though these can be tuned later to taste. These values should not exceed 60 degrees.

Next, the P, I, and D variables for each axis ... roll angle and ... pitch angle should be set to
starting values. The default code provides well-tuned values for a 1000 g quadrotor vehicle with
7 inch propellers. Take note of these to understand appropriate increments to change the gains
by later, and set all I and D terms to 0. Please note that this controller type requires that the D
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angle gains Kd roll angle and Kd pitch angle are set to 0 at all times. Damping is achieved with a
different variable B loop contained within the controlANGLE2() function which is well-tuned and
should not require significant, if any, modification.

Lower the P terms from the default by about 50% and power up the vehicle to check that the
motors are stabilized correctly by moving the vehicle and the transmitter sticks. Attempt a brief
flight (if possible, anchored down) and note the flight characteristics. If there are any oscillations,
the B loop damping term in controlANGLE2() may need to be decreased in 0.05 increments for
more damping. The P gain may still be too low for adequate control authority, so begin to increase
the P gain in 15% increments. Test the response by commanding a fast roll or pitch change (for
example from level to 20 degrees and back). You should observe that the vehicle quickly moves
to the desired attitude with no oscillations. This process can be refined as the P gains are slowly
increased. However past a certain point, the gains will be too high and you may notice that the
aircraft has a ’noisy’ attitude i.e. it seems to jitter in the air despite a very good response to
control inputs. In this case, the gains have been tuned too high; dial the controller gains back to a
safe level where the response is still acceptable and the jitters have stopped. Please note that this
process requires individual treatment of each axis which can be done at the same time, but should
be thought of as independent things being tuned.

Once the P gains are adequately tuned, you may notice that the vehicle has some steady state
error i.e. it will want to drift even when no angles are being commanded from the transmitter. It
is now time to dial in the I terms in increments of about 15% of the default gain values. Do this for
each axis until letting go of the sticks brings the vehicle to level and it does not drift around very
much. No more I term is needed, as too much can cause low frequency oscillations. The controller
is now tuned for normal flight, but can be fine-tuned to your preference.

9.13 MPU9250 Integration

The default code and hardware is intended to be used in conjunction with the MPU6050 6 degree of
freedom IMU. Excellent attitude estimates are achieved with this cheap IMU which should provide
adequate performance for any use case. With that said, code support for the MPU9250 9 degree
of freedom IMU is included as well. The MPU9250 uses SPI connection for faster data transfer
compared to I2C. The downside of this is that it requires additional pins. The small pads on the
back side of the Teensy 4.0 are used instead of the 2 pins on the top of the board for the MPU6050
default hardware setup; these are selected to free up the more accessible pins on the top of the
board with the downside of them being more difficult to solder. Table 26 gives the pins on the IMU
and Teensy 4.0 that must be connected for proper operation.

IMU Pin Teensy 4.0 Pin

VCC Any 5v Power

GND Any Ground

SCL 37 (SCK2)

SDA 35 (MOSI2)

AD0 34 (MISO2)

NCS 36 (CS2)

Table 26: Pin connection from MPU9250 IMU to the Teensy 4.0.

The MPU9250 has slightly different characteristics compared to the MPU6050, which this code
was originally written and tuned for. Before flying, adjust the B accel parameter to 0.2 and the
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B gyro parameter to 0.17. These values may need further tuning. Additionally, please allow 5-10
extra seconds after the flight controller enters the main loop (indicated by a quick blink every
1.5 seconds) before attempting to fly so that the 9DOF attitude estimation has adequate time to
converge. If possible, power up the flight controller with the nose of the aircraft facing North to
allow the attitude estimate to converge more quickly.

9.14 Basics of Coding with Arduino

The dRehmFlight VTOL code is modified within the Arduino environment. The C coding language
is used to implement the basic stock functionality, as well as to add any other functionality. The
following are some basic tips to get started in understanding this coding language so that you can
get started modifying the base code for your needs:

COMING SOON!

10 Working Vehicles

dRehmFlight has been successfully implemented on the following platforms:

10.1 Quadrotor

The code as provided is configured for a simple quadrotor configuration. This is recommended
as a starting point for becoming familiar with the flow of code and options for customization.
The following quadrotor is capable of piloted flight, but was also supplemented with an onboard
flight computer which sent simulated radio commands (modified in the getCommands() function to
monitor the state of an auxiliary switch to either get radio commands from the receiver or through
a simple serial connection with the flight computer) enabling complete autonomous flight.

Figure 36: Simple quadrotor platform.

Flight video:
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https://www.youtube.com/watch?v=p8frNNYQNV4

10.2 Quadrotor Biplane VTOL

The simple quadrotor code can be easily modified for a quadrotor biplane type VTOL platform.
The state of an auxiliary switch is monitored in the controlMixer() function, where the roll and yaw
axis are switched between hover and airplane mode along with appropriate command reversing.
The controller gains can also be modified based on the state of this switch for unique tuning between
different flight modes.

Figure 37: Quadrotor Biplane VTOL platform.

Flight video:
https://www.youtube.com/watch?v=rk4tUKM6bd0

10.3 Dual Cyclocopter

The dual cyclocopter is a very unique platform that requires special control mixing in the con-
trolMixer() function. A combination of motors and servos for roll, pitch, and yaw control require
specific assignment of stabilized axis variables from the chosen controller type.

Figure 38: Dual cyclocopter platform.

Flight video:
https://www.youtube.com/watch?v=JoVmejDsMrM&
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10.4 F-35 Tricopter VTOL

A tricopter-based hovering F-35 platform is an excellent example of the power of the Teensy 4.0
to do extremely custom control mixing and fading tailored to the user’s need. The state of an
auxiliary switch is monitored in the controlMixer() function to change assignments to the motors
and servos for hover, transition, and forward flight. Controller gains are also adjusted based off of
the state of this switch. Additionally, unique fading in code is used to entirely turn off the front
lifting motor as the vehicle transitions into forward flight–this can be done with basic knowledge
of logical statements in code.

Figure 39: F-35 tricopter VTOL platform.

Flight video:
https://www.youtube.com/watch?v=RqdcZD0ZoUk

10.5 Model SpaceX Starhopper

This tailsitter-type VTOL uses counter rotating motors inside the cylindrical body and three con-
trol surfaces at the bottom to vector the thrust. Differential thrust provides yaw control, and a
combination of mixing on the control surfaces gives roll, pitch, and supplements yaw.

Figure 40: Model SpaceX Starhopper.

Flight video:
https://www.youtube.com/watch?v=VsyFejn40Ss
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10.6 Model SpaceX Starship

This unique configuration uses two counter rotating brushless motors at the bottom for thrust,
each independently vectored for roll and pitch control, with differential throttle for yaw control
in hover. The state of an auxiliary switch is monitored in the controlMixer() function to engage
stabilized control surfaces for a skydive maneuver from altitude.

Figure 41: Model SpaceX Starship.

Flight video:
https://www.youtube.com/watch?v=5lwH7xJnB4I

10.7 Inverted Pendulum Drone Stabilization

While not representative of the stock capabilities of dRehmFlight, this project showcases it’s ver-
satility. A second IMU and controller function was added to the code to allow a racing drone to
balance an inverted pendulum. The added pendulum controller code feeds into the controlAngle()
function to steer the drone around to stabilize the pendulum.
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Figure 42: Racing drone balancing an inverted pendulum.

Flight video:
https://www.youtube.com/watch?v=XmYRQi48s-8

10.8 Fixed Wing Ground Effect Vehicle

dRehmFlight can be used to stabilize non-hovering platforms like airplanes too. This airplane was
designed to fly in ground effect, but angle stabilization helped provide smoother flying qualities.
The addition of a lidar sensor and altitude hold controller to the code also allows it to maintain a
very low altitude without the need for pilot input.

Figure 43: Fixed wing ground effect vehicle.

Flight video:
https://www.youtube.com/watch?v=uaY2G5Kbj_g

10.9 Spinning Tricopter VTOL

This platform hovers like a regular tricopter, but can also spin at extreme speeds to improve
hovering efficiency with the addition of wings on each arm. It can also use these wings to pitch over
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for forward flight cruise. Regular tricopter mixing is used in hover, but the code was modified so
that the controller stabilization fades out as the rotation rate, or GyroZ, increased. At high rates
of spin, this platform is actually passively stable and does not require the active stabilization of
regular multirotors.

Figure 44: Spinning VTOL.

Flight video:
https://www.youtube.com/watch?v=7JH1_ZKV7t4

10.10 Model Joby EVTOL

This model uses 6 micro drone motors with 3” propellers to emulate the full-scale Joby EVTOL
demonstrator aircraft. Each motor has an associated tilt servo, and mixing for hover and forward
flight is used to allow it to transition from one flight mode to another. The hover flight mode
supplements yaw control by tilting the motors. To achieve control in forward flight without control
surfaces on such a small vehicle, the motors tilt to provide roll and pitch control, while differential
thrust provides yaw control.

Figure 45: Model Joby EVTOL.

Flight video:
https://www.youtube.com/watch?v=Dd2N_lyO_SQ
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10.11 Model V-22 Osprey

This model uses 2 450-sized helicopter rotor head assemblies that tilt to emulate the famous V-22
Osprey VTOL. The stock dRehmFlight code is modified to include additional outputs for servos to
account for the rotor heads, ailerons, elevator, and rotor tilt mechanisms. Highly custom control
mixing allows for similar flight characteristics of the full size aircraft.

Figure 46: Model V-22 Osprey.

Flight video:
https://www.youtube.com/watch?v=2OGkYfOs9EU

10.12 Tricopter Tailsitter

This is an elegantly designed tricopter tailsitter that uses the control surfaces to deflect motor
thrust for yaw control in hover. In forward flight, the control surfaces provide roll, pitch, and yaw
control.

Figure 47: Tricopter Tailsitter.

Flight video:
https://www.youtube.com/watch?v=8MJNfkEBRMY
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10.13 Tail-less Albatross

This fixed wing platform is designed to emulate the efficiency of nature’s albatross. It features split
elevons to provide yaw control authority. The addition of a vane to detect sideslip angles helps to
stabilize the yaw axis with slight modification to the default code.

Figure 48: Tail-less RC Albatross.

Flight video:
https://www.youtube.com/watch?v=1ifR_cvjpjk

If you would like your own aircraft flying with dRehmFlight VTOL to be featured here, please
email Nick at NicholasRehmYT@gmail.com and include a picture and link to a flight video!

11 Frequently Asked Questions

• Question: ”Is this flight controller meant for racing drones and is it better than other flight
controllers like Ardupilot or Betaflight?”

Answer: No. This code is not nearly as developed as those other packages and will not give
nearly the same high-performance seen on multirotor platforms or racing/freestyle drones.
With that said, this code will give better performance than other flight controllers developed
for VTOL application in the past, as it uses modern hardware and faster communication
protocols. It is intended to be a ’bare-bones’ flight controller that allows for extreme levels
of customization not possible on other flight controller packages.

• Question: ”I found a better/faster way to do the same code, why can’t you change your
code for better performance?”

Answer: The purpose of this project is not to provide the highest performance code, but
to provide the most understandable code that anyone with minimal Arduino experience can
easily modify for their use. The Teensy 4.0 (and 4.1) board is more than fast enough to run
sloppy code at high speed for a flight controller application. You are more than welcome to
modify and improve the code for your application, this is just a starting point!

• Question: ”I got your code and flight controller setup and running on my vehicle. Why does
it not fly itself and still crash?”
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Answer: dRehmFlight is a flight stabilization package, not an autopilot. The pilot remains
in full control of the vehicle attitude at all times and must have prior experience flying model
aircraft for a successful flight.

• Question: ”Can I use a different board for my flight controller assembly other than the
Teensy 4.0? For example, Teensy 3.6, Arduino Uno, or Arduino Nano?”

Answer: No. This code is built to run on the Teensy 4.0/4.1 with Cortex M7 microprocessor.
Other microcontrollers such as Arduino or earlier versions of Teensy are not fast enough
and/or do not have the necessary i/o capability.

• Question: ”Your code caused my expensive aircraft to crash, what will you do about that?”

Answer: I assume no responsibility for damages done to your aircraft or property as a result
of the use of this code. If you are using this code for a larger or more expensive project,
I assume that you are capable enough to ensure proper safety protocol are being followed
and that all aspects of the code–default or modified–are properly inspected and checked for
correct operation prior to flying. Use and modify at your own risk. With that said, any
feedback or data on failure of the code, if provided, will help to improve future versions.

• Question: ”Will you be updating the code in the future?”

Answer: Yes, the current version is very early in development. Expect variable and function
names to be adjusted to better reflect their use, the implementation of new functions to
expand functionality, and support for more radio and ESC protocols in the future.

12 License Information

This work includes a GNU General Public License. This allows commercial use, distribution,
modification, patent use, and private use of the provided code on the condition that the original
source is disclosed, the same license is used on modified work, and all changes are clearly stated.

13 Disclaimer

This code is a shared, open source flight controller for small micro aerial vehicles and is intended
to be modified to suit your needs. It is NOT intended to be used on manned vehicles. I do not
claim any responsibility for any damage or injury that may be inflicted as a result of the use of this
code. Use and modify at your own risk. More specifically put:

THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS ”AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
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14 Credits

This project is the result of the need for a simple, easy to understand flight controller solution.
Special thanks to Joop Brokking for his work on the YMFC-32 project. Many elements of this code
were inspired by his work:

http://www.brokking.net/ymfc-al_main.html

Skeleton code for reading the MPU6050 IMU was borrowed and adapted from How To Mechatronics:
https://bit.ly/3hzCQ03

MPU9250 implementation based on MPU9250 library by brian.taylor@bolderflight.com:
http://www.bolderflight.com

Finally, the Madgwick filter function was adapted from:
https://github.com/arduino-libraries/MadgwickAHRS

Special thanks to ’jihlein’ on RcGroups for the IMU implementation overhaul and SBUS integration.

15 Citing This Work

If you are using this for an academic or scholarly project, please credit me in any presentations or
publications:

@misc{dRehmFlight,
author = {Rehm, Nicholas},
title = {dRehmFlight VTOL Flight Controller},
month = {Jan},
year = {2020},
url = {https://github.com/nickrehm/dRehmFlight}
}
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